Accéder au contenu
Merck

BPGAP1 spatially integrates JNK/ERK signaling crosstalk in oncogenesis.

Oncogene (2017-01-17)
T Jiang, C Q Pan, B C Low
RÉSUMÉ

Simultaneous hyperactivation of stress-activated protein kinase/c-Jun N-terminal protein kinase (SAPK/JNK) and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signaling cascades has been reported in carcinogenesis. However, how they are integrated to promote oncogenesis remains unknown. By analyzing breast invasive carcinoma database (The Cancer Genome Altas), we found that the mRNA expression levels of both JNK1 and ERK2 are positively correlated with the mRNA level of EEA1, an endosome associated protein, indicating the potential JNK/ERK crosstalk at endosome. Unbiased screen of different endosome-associated Rab GTPases reveals that late endosome serves as a unique platform to integrate JNK/ERK signaling. Furthermore, we identify that BPGAP1 (a BCH domain-containing, Cdc42GAP-like Rho GTPase-activating protein) promotes MEK partner 1 (MP1)-induced ERK activation on late endosome through scaffolding MP1/MEK1 complex. This regulatory function requires phosphorylation of BPGAP1 by JNK at its C terminal tail (Ser424) to unlock its autoinhibitory conformation. Consequently, phosphorylated BPGAP1 facilitates endosomal ERK signaling transduction to the nucleus, driving cell proliferation and transformation via the ERK-Myc-CyclinA axis. BPGAP1 therefore provides a crucial spatiotemporal checkpoint where JNK and MP1/MEK1 work in concert to regulate endosomal and nuclear ERK signaling in cell proliferation control.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
MISSION® esiRNA, targeting human PITRM1