Accéder au contenu
Merck

Proteomic analysis of perfluorooctane sulfonate-induced apoptosis in human hepatic cells using the iTRAQ technique.

Journal of applied toxicology : JAT (2013-12-05)
Qingyu Huang, Jie Zhang, Siyuan Peng, Miaomiao Du, Sawyen Ow, Hai Pu, Chensong Pan, Heqing Shen
RÉSUMÉ

Perfluorooctane sulfonate (PFOS) is one of the most commonly used perfluorinated compounds, whose environmental exposure has been associated with a number of adverse health outcomes. However, the molecular mechanisms involved in PFOS toxicity are still not well elucidated. In the present study, we applied iTRAQ labeling quantitative proteomic technology to investigate the differential protein expression profiles of non-tumor human hepatic cells (L-02) exposed to PFOS. A total of 18 proteins were differentially expressed in a dose-dependent manner in PFOS-treated cells versus the control. Among these, 11 proteins were up-regulated and 7 were down-regulated. Gene ontology analysis indicated that PFOS would exert toxic effects on L-02 cells by affecting multiple biological processes, including protein biosynthesis and degradation, mRNA processing and splicing, transcription, signal transduction and transport. Furthermore, the proteomic results especially proposed that the inhibition of HNRNPC, HUWE1 and UBQLN1, as well as the induction of PAF1 is involved in the activation of the p53 and c-myc signaling pathways, which then trigger the apoptotic process in L-02 cells exposed to PFOS. Overall, these data will aid our understanding of the mechanisms responsible for PFOS-mediated hepatotoxicity, and develop useful biomarkers for monitoring and evaluating PFOS contamination in the environment.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Iodure de propidium, ≥94.0% (HPLC)
Sigma-Aldrich
Anticorps monoclonal de souris anti-c-Myc antibody produced in mouse, clone 9E10, purified from hybridoma cell culture
Sigma-Aldrich
Anti-c-Myc antibody produced in rabbit, ~0.5 mg/mL, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Iodure de propidium solution
Sigma-Aldrich
Iodure de propidium, ≥94% (HPLC)