Accéder au contenu
Merck

CREB3L1 and CREB3L2 control Golgi remodelling during decidualization of endometrial stromal cells.

Frontiers in cell and developmental biology (2022-11-01)
Daniele Pittari, Marco Dalla Torre, Elena Borini, Barbara Hummel, Ritwick Sawarkar, Claudia Semino, Eelco van Anken, Paola Panina-Bordignon, Roberto Sitia, Tiziana Anelli
RÉSUMÉ

Upon progesterone stimulation, Endometrial Stromal Cells (EnSCs) undergo a differentiation program into secretory cells (decidualization) to release in abundance factors crucial for embryo implantation. We previously demonstrated that decidualization requires massive reshaping of the secretory pathway and, in particular, of the Golgi complex. To decipher the underlying mechanisms, we performed a time-course transcriptomic analysis of in vitro decidualizing EnSC. Pathway analysis shows that Gene Ontology terms associated with vesicular trafficking and early secretory pathway compartments are the most represented among those enriched for upregulated genes. Among these, we identified a cluster of co-regulated genes that share CREB3L1 and CREB3L2 binding elements in their promoter regions. Indeed, both CREB3L1 and CREB3L2 transcription factors are up-regulated during decidualization. Simultaneous downregulation of CREB3L1 and CREB3L2 impairs Golgi enlargement, and causes dramatic changes in decidualizing EnSC, including Golgi fragmentation, collagen accumulation in dilated Endoplasmic Reticulum cisternae, and overall decreased protein secretion. Thus, both CREB3L1 and CREB3L2 are required for Golgi reshaping and efficient protein secretion, and, as such, for successful decidualization.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anti-OASIS (CREB3L1) Antibody, clone 10H1, clone 10H1, from mouse
Sigma-Aldrich
Anti-BBF2H7/CREB3L2 Antibody, clone 28G9, clone 28G9, from mouse