Accéder au contenu
Merck

Laser irradiation activates spinal adenosine A1 receptor to alleviate osteoarthritis pain in monosodium iodoacetate injected rats.

Journal of integrative neuroscience (2020-07-25)
Yuan Li, Fan Wu, Li Xing Lao, Xue Yong Shen
RÉSUMÉ

The analgesic role of the adenosine A1 receptor is thought to involve the modulation of the spinal N-methyl D-aspartate receptor-mediated nociceptive pathway, which is suggested to be an underlying mechanism in chronic pain. Knee osteoarthritis is a degenerative condition accompanied by chronic pain. We have demonstrated that 10.6-μm laser irradiation has an antinociceptive effect in the monosodium iodoacetate -induced knee osteoarthritis in rats. However, its mechanism of action has yet to be explored. In the present work, we investigate the mechanism of 10.6-μm laser irradiation mediated antinociception in the monosodium iodoacetate -induced knee osteoarthritis. Results showed that the 10.6-μm laser significantly reversed the monosodium iodoacetate -induced nociceptive behaviors for up to 28 days. Moreover, the up-regulation of the A1 receptor and the down-regulated phosphorylation of the N-methyl D-aspartate receptor 1 subunit of the N-methyl D-aspartate receptor were observed in the spinal cord dorsal horn in the monosodium iodoacetate injected rats treated by laser irradiation. Intrathecal injection of 8-cyclopentyl-1,3-dipropylxanthine markedly reversed the effects of laser irradiation, as evidenced both by behavioral pain tests and by levels of spinal phosphorylation of N-methyl D-aspartate receptor 1. These results suggest that the spinal A1 receptor contributes to the antinociceptive effects of 10.6-μm laser, at least in part by inhibiting phosphorylation of N-methyl D-aspartate receptor 1 in the monosodium iodoacetate -induced knee osteoarthritis pain.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
8-Cyclopentyl-1,3-dipropylxanthine, solid