Accéder au contenu
Merck

Renal denervation in male rats with heart failure improves ventricular sympathetic nerve innervation and function.

American journal of physiology. Regulatory, integrative and comparative physiology (2017-01-06)
Maximilian I Pinkham, Michael T Loftus, Satya Amirapu, Sarah-Jane Guild, Gina Quill, William R Woodward, Beth A Habecker, Carolyn J Barrett
RÉSUMÉ

Heart failure is characterized by the loss of sympathetic innervation to the ventricles, contributing to impaired cardiac function and arrhythmogenesis. We hypothesized that renal denervation (RDx) would reverse this loss. Male Wistar rats underwent myocardial infarction (MI) or sham surgery and progressed into heart failure for 4 wk before receiving bilateral RDx or sham RDx. After additional 3 wk, left ventricular (LV) function was assessed, and ventricular sympathetic nerve fiber density was determined via histology. Post-MI heart failure rats displayed significant reductions in ventricular sympathetic innervation and tissue norepinephrine content (nerve fiber density in the LV of MI+sham RDx hearts was 0.31 ± 0.05% vs. 1.00 ± 0.10% in sham MI+sham RDx group, P < 0.05), and RDx significantly increased ventricular sympathetic innervation (0.76 ± 0.14%, P < 0.05) and tissue norepinephrine content. MI was associated with an increase in fibrosis of the noninfarcted ventricular myocardium, which was attenuated by RDx. RDx improved LV ejection fraction and end-systolic and -diastolic areas when compared with pre-RDx levels. This is the first study to show an interaction between renal nerve activity and cardiac sympathetic nerve innervation in heart failure. Our findings show denervating the renal nerves improves cardiac sympathetic innervation and function in the post-MI failing heart.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anticorps anti-PGP 9.5 ("protein gene product 9.5"), from rabbit, purified by affinity chromatography
Sigma-Aldrich
Anti-Choline Transporter Antibody, from rabbit, purified by affinity chromatography