Accéder au contenu
Merck

Multi-omic Profiling Reveals Dynamics of the Phased Progression of Pluripotency.

Cell systems (2019-05-13)
Pengyi Yang, Sean J Humphrey, Senthilkumar Cinghu, Rajneesh Pathania, Andrew J Oldfield, Dhirendra Kumar, Dinuka Perera, Jean Y H Yang, David E James, Matthias Mann, Raja Jothi
RÉSUMÉ

Pluripotency is highly dynamic and progresses through a continuum of pluripotent stem cell states. The two states that bookend the pluripotency continuum, naive and primed, are well characterized, but our understanding of the intermediate states and transitions between them remains incomplete. Here, we dissect the dynamics of pluripotent state transitions underlying pre- to post-implantation epiblast differentiation. Through comprehensive mapping of the proteome, phosphoproteome, transcriptome, and epigenome of embryonic stem cells transitioning from naive to primed pluripotency, we find that rapid, acute, and widespread changes to the phosphoproteome precede ordered changes to the epigenome, transcriptome, and proteome. Reconstruction of the kinase-substrate networks reveals signaling cascades, dynamics, and crosstalk. Distinct waves of global proteomic changes mark discrete phases of pluripotency, with cell-state-specific surface markers tracking pluripotent state transitions. Our data provide new insights into multi-layered control of the phased progression of pluripotency and a foundation for modeling mechanisms regulating pluripotent state transitions (www.stemcellatlas.org).

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Fluorure de phénylméthanesulfonyle, ≥98.5% (GC)
Sigma-Aldrich
Anticorps anti-triméthyl-histone H3 (Lys27), Upstate®, from rabbit
Sigma-Aldrich
Anti-PRDM14 Antibody, from rabbit, purified by affinity chromatography