Skip to Content
Merck
  • Synthesis of poly(meth)acrylates with thioether and tertiary sulfonium groups by ARGET ATRP and their use as siRNA delivery agents.

Synthesis of poly(meth)acrylates with thioether and tertiary sulfonium groups by ARGET ATRP and their use as siRNA delivery agents.

Biomacromolecules (2014-12-18)
Matthew C Mackenzie, Arun R Shrivats, Dominik Konkolewicz, Saadyah E Averick, Michael C McDermott, Jeffrey O Hollinger, Krzysztof Matyjaszewski
ABSTRACT

The field of RNA interference depends on the development of safe and efficient carriers for short interfering ribonucleic acid (siRNA) delivery. Conventional cationic monomers for siRNA delivery have utilized the nitrogen heteroatom to produce cationic charges. Here, we polymerized cationic sulfonium (meth)acrylate by activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP) to form polymers with narrow molecular weight distributions for siRNA delivery. The tertiary sulfonium species was stable toward dealkylation in water but less stable in the polar aprotic solvent dimethyl sulfoxide. Block copolymers poly(ethylene oxide) with poly(meth)acrylate containing sulfonium moieties were prepared as an siRNA delivery platform. Results suggested block copolymers were biocompatible up to 50 μg/mL in vitro and formed polyplexes with siRNA. Additionally, block copolymers protected siRNAs against endonuclease digestion and facilitated knockdown of glyceraldehyde 3-phosphate dehydrogenase (Gapdh) mRNA expression in murine calvarial preosteoblasts. The versatility, biocompatibility, and cationic nature of these tertiary sulfonium groups are expected to find widespread biological applications.

MATERIALS
Product Number
Brand
Product Description

USP
Valacyclovir Related Compound G, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Supelco
Hydrogen chloride – 2-propanol solution, ~1.25 M HCl (T), for GC derivatization, LiChropur
Supelco
N,N-Dimethylformamide, analytical standard
Supelco
Methanol, analytical standard
Sigma-Aldrich
Acetone, purum, ≥99.0% (GC)
Supelco
Acetone, analytical standard
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Supelco
Hydrogen chloride – ethanol solution, ~1.25 M HCl, for GC derivatization, LiChropur
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), for GC derivatization, LiChropur
Supelco
L-Ascorbic acid, analytical standard
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Aluminum oxide, mesoporous, MSU-X (wormhole), average pore size 3.8 nm
Sigma-Aldrich
L-Ascorbic acid, ACS reagent, ≥99%
Sigma-Aldrich
N,N-Dimethylformamide, anhydrous, 99.8%
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Acrylic acid, anhydrous, contains 200 ppm MEHQ as inhibitor, 99%
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
N,N-Dimethylformamide, for molecular biology, ≥99%
Supelco
Ascorbic Acid, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Aluminum oxide, nanoparticles, <50 nm particle size (DLS), 20 wt. % in isopropanol
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
USP
Ascorbic acid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Aluminum oxide, nanoparticles, 30-60 nm particle size (TEM), 20 wt. % in H2O