- Vibrational spectroscopic investigation (FT-IR and FT-Raman) on 1,2-dibromobenzene by HF and hybrid (LSDA and B3LYP) calculations.
Vibrational spectroscopic investigation (FT-IR and FT-Raman) on 1,2-dibromobenzene by HF and hybrid (LSDA and B3LYP) calculations.
The FT-IR and FT-Raman spectra of the compound 1,2-dibromobenzene have been recorded in the region 4000-100cm(-1). The vibrational analysis has been made using HF and DFT (B3LYP and LSDA) level of theory by employing 6-31 +G (d, p) and 6-311 ++G (d, p) basis sets. Optimized geometrical parameters have been calculated, interpreted and compared with the reported experimental values of some halogen-substituted benzene. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction of HF and DFT. The geometrical structure of the compound is fractured by the substitutions of couple of Br in the ring. From the vibrational assignments it is observed that, the vibrational pattern of the fundamental modes is realigned slightly with respect to the substitutions. The simulated FT-IR and FT-Raman spectra of the compound for different methods are compared with the experimental spectra. The impact of Br in the vibrational assignments of the molecule is also investigated.