Skip to Content
Merck
  • Rational design of 5-phenyl-3-isoxazolecarboxylic acid ethyl esters as growth inhibitors of Mycobacterium tuberculosis. a potent and selective series for further drug development.

Rational design of 5-phenyl-3-isoxazolecarboxylic acid ethyl esters as growth inhibitors of Mycobacterium tuberculosis. a potent and selective series for further drug development.

Journal of medicinal chemistry (2009-12-17)
Annamaria Lilienkampf, Marco Pieroni, Baojie Wan, Yuehong Wang, Scott G Franzblau, Alan P Kozikowski
ABSTRACT

New antituberculosis (anti-TB) drugs are urgently needed to shorten the 6-12 month treatment regimen and especially to battle drug-resistant Mycobacterium tuberculosis (Mtb) strains. In this study, we have continued our efforts to develop isoxazole-based anti-TB compounds by applying rational drug design approach. The biological activity and the structure-activity relationships (SAR) for a designed series of 5-phenyl-3-isoxazolecarboxylic acid ethyl ester derived anti-TB compounds were investigated. Several compounds were found to exhibit nanomolar activity against the replicating bacteria (R-TB) and low micromolar activity against the nonreplicating bacteria (NRP-TB). The series showed excellent selectivity toward Mtb, and in general, no cytotoxicity was observed in Vero cells (IC(50) > 128 muM). Notably, selected compounds also retained their activity against isoniazid (INH), rifampin (RMP), and streptomycin (SM) resistant Mtb strains. Hence, benzyloxy, benzylamino, and phenoxy derivatives of 5-phenyl-3-isoxazolecarboxylic acid ethyl esters represent a highly potent, selective, and versatile series of anti-TB compounds and as such present attractive lead compounds for further TB drug development.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Rifampicin, ≥95% (HPLC), powder or crystals
Sigma-Aldrich
Rifampicin, suitable for plant cell culture, BioReagent, ≥95% (HPLC), powder or crystals
Sigma-Aldrich
5-Phenylisoxazole-3-carboxylic acid, 97%
Supelco
Isoniazid, analytical standard, ≥99% (TLC)