Direkt zum Inhalt
Merck
  • Coupling the pretreatment and hydrolysis of lignocellulosic biomass by the expression of beta-xylosidases.

Coupling the pretreatment and hydrolysis of lignocellulosic biomass by the expression of beta-xylosidases.

Biotechnology and bioengineering (2017-07-16)
Lucía Martín Pérez, Laura Benítez Casanova, Antonio J Moreno Pérez, Dolores Pérez Gómez, Sandra Gavaldá Martín, Laura Ledesma-García, Noelia Valbuena Crespo, Bruno Díez García, Francisco M Reyes-Sosa
ZUSAMMENFASSUNG

Thermochemical pretreatment and enzymatic hydrolysis are the areas contributing most to the operational costs of second generation ethanol in lignocellulosic biorefineries. The improvement of lignocellulosic enzyme cocktails has been significant in the recent years. Although the needs for the reduction of the energy intensity and chemical consumption in the pretreatment step are well known, the reduction of the severity of the process strongly affects the enzymatic hydrolysis yield. To explore the formulation requirements of the well known cellulolytic cocktail from Myceliophthora thermophila on mild pretreated raw materials, this cocktail was tested on steam exploded corn stover without acid impregnation. The low hemicellulose yield and significant accumulation of xylobiose compared with the standard pretreated material obtained with dilute acid impregnation evidenced a clear limitation in the conversion of xylan to xylose. In order to complement the beta-xylosidase limitation, a selection of enzymes was expressed and tested in this fungus. A controlled expression of xylosidases from Aspergillus nidulans, Aspergillus fumigatus, and Fusarium oxysporum allowed recovering hemicellulose yields reached with standard acid treated material. The results underline the need of parallel development of the pretreatment process with the optimization of the formulation of the enzymatic cocktails.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Supelco
SYPRO® Orange Protein-Gel-Farbstoff