Direkt zum Inhalt
Merck
  • Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species.

Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species.

Plant, cell & environment (2017-05-31)
Ali Kiani-Pouya, Ute Roessner, Nirupama S Jayasinghe, Adrian Lutz, Thusitha Rupasinghe, Nadia Bazihizina, Jennifer Bohm, Sulaiman Alharbi, Rainer Hedrich, Sergey Shabala
ZUSAMMENFASSUNG

Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments. However, little direct supporting evidence is available. Here, Chenopodium quinoa plants were grown under saline conditions for 5 weeks. One day prior to salinity treatment, EBCs from all leaves and petioles were gently removed by using a soft cosmetic brush and physiological, ionic and metabolic changes in brushed and non-brushed leaves were compared. Gentle removal of EBC neither initiated wound metabolism nor affected the physiology and biochemistry of control-grown plants but did have a pronounced effect on salt-grown plants, resulting in a salt-sensitive phenotype. Of 91 detected metabolites, more than half were significantly affected by salinity. Removal of EBC dramatically modified these metabolic changes, with the biggest differences reported for gamma-aminobutyric acid (GABA), proline, sucrose and inositol, affecting ion transport across cellular membranes (as shown in electrophysiological experiments). This work provides the first direct evidence for a role of EBC in salt tolerance in halophytes and attributes this to (1) a key role of EBC as a salt dump for external sequestration of sodium; (2) improved K

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
D-Sorbit-13C6, 99 atom % 13C, 99% (CP)