Direkt zum Inhalt
Merck

Urea-Hydroxyapatite Nanohybrids for Slow Release of Nitrogen.

ACS nano (2017-01-26)
Nilwala Kottegoda, Chanaka Sandaruwan, Gayan Priyadarshana, Asitha Siriwardhana, Upendra A Rathnayake, Danushka Madushanka Berugoda Arachchige, Asurusinghe R Kumarasinghe, Damayanthi Dahanayake, Veranja Karunaratne, Gehan A J Amaratunga
ZUSAMMENFASSUNG

While slow release of chemicals has been widely applied for drug delivery, little work has been done on using this general nanotechnology-based principle for delivering nutrients to crops. In developing countries, the cost of fertilizers can be significant and is often the limiting factor for food supply. Thus, it is important to develop technologies that minimize the cost of fertilizers through efficient and targeted delivery. Urea is a rich source of nitrogen and therefore a commonly used fertilizer. We focus our work on the synthesis of environmentally benign nanoparticles carrying urea as the crop nutrient that can be released in a programmed manner for use as a nanofertilizer. In this study, the high solubility of urea molecules has been reduced by incorporating it into a matrix of hydroxyapatite nanoparticles. Hydroxyapatite nanoparticles have been selected due to their excellent biocompatibility while acting as a rich phosphorus source. In addition, the high surface area offered by nanoparticles allows binding of a large amount of urea molecules. The method reported here is simple and scalable, allowing the synthesis of a urea-modified hydroxyapatite nanohybrid as fertilizer having a ratio of urea to hydroxyapatite of 6:1 by weight. Specifically, a nanohybrid suspension was synthesized by in situ coating of hydroxyapatite with urea at the nanoscale. In addition to the stabilization imparted due to the high surface area to volume ratio of the nanoparticles, supplementary stabilization leading to high loading of urea was provided by flash drying the suspension to obtain a solid nanohybrid. This nanohybrid with a nitrogen weight of 40% provides a platform for its slow release. Its potential application in agriculture to maintain yield and reduce the amount of urea used is demonstrated.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
exo-5-Norbornen-Carboxylsäure, 97%