Direkt zum Inhalt
Merck
  • Encapsulation of metal clusters within MFI via interzeolite transformations and direct hydrothermal syntheses and catalytic consequences of their confinement.

Encapsulation of metal clusters within MFI via interzeolite transformations and direct hydrothermal syntheses and catalytic consequences of their confinement.

Journal of the American Chemical Society (2014-10-15)
Sarika Goel, Stacey I Zones, Enrique Iglesia
ZUSAMMENFASSUNG

The encapsulation of metal clusters (Pt, Ru, Rh) within MFI was achieved by exchanging cationic metal precursors into a parent zeolite (BEA, FAU), reducing them with H2 to form metal clusters, and transforming these zeolites into daughter structures of higher framework density (MFI) under hydrothermal conditions. These transformations required MFI seeds or organic templates for FAU parent zeolites, but not for BEA, and occurred with the retention of encapsulated clusters. Clusters uniform in size (1.3-1.7 nm) and exposing clean and accessible surfaces formed in BEA and FAU zeolites; their size remained essentially unchanged upon transformation into MFI. Encapsulation selectivities, determined from the relative hydrogenation rates of small (toluene) and large (alkyl arenes) molecules and defined as the ratio of the surface areas of all the clusters in the sample to that of external clusters, were very high (8.1-40.9) for both parent and daughter zeolites. Encapsulation into MFI via direct hydrothermal syntheses was unsuccessful because metal precursors precipitated prematurely at the pH and temperatures required for MFI synthesis. Delayed introduction of metal precursors and F(-) (instead of OH(-)) as the mineralizing agent in hydrothermal syntheses increased encapsulation selectivities, but they remained lower than those achieved via interzeolite transformations. These interconversions provide a general and robust strategy for encapsulation of metals when precursors can be introduced via exchange into a zeolite that can be transformed into target daughter zeolites with higher framework densities, whether spontaneously or by using seeds or structure-directing agents (SDA).

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Natriumhydroxid, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Natriumhydroxid, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Natronlauge, 50% in H2O
Sigma-Aldrich
Natronlauge, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Tetraethylorthosilikat, reagent grade, 98%
Sigma-Aldrich
Natriumhydroxid, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Natronlauge, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Natriumhydroxid, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
Natriumhydroxid, reagent grade, 97%, powder
Sigma-Aldrich
Tetraethylorthosilikat, ≥99.0% (GC)
Sigma-Aldrich
Natriumhydroxid, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
Natriumhydroxid, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets
Sigma-Aldrich
Natronlauge, 5.0 M
Sigma-Aldrich
Natriumhydroxid, beads, 16-60 mesh, reagent grade, 97%
Sigma-Aldrich
Natriumhydroxid, puriss. p.a., ACS reagent, K ≤0.02%, ≥98.0% (T), pellets
Sigma-Aldrich
Tetraethylorthosilikat, 99.999% trace metals basis
Sigma-Aldrich
Natriumhydroxid, reagent grade, 97%, flakes
Sigma-Aldrich
Natriumhydroxid, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Tetrapropylammoniumbromid, 98%
Sigma-Aldrich
Natronlauge, purum, ≥32%
Supelco
Natronlauge-Konzentrat, 0.1 M NaOH in water (0.1N), Eluent concentrate for IC
Sigma-Aldrich
Tetraethylorthosilicat, packaged for use in deposition systems
Sigma-Aldrich
Mesitylen, 98%
Sigma-Aldrich
Mesitylen, reagent grade, 97%
Supelco
Natronlauge, 49-51% in water, eluent for IC
Sigma-Aldrich
Natriumhydroxid-16O -Lösung, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
3-Ethyl-2,4-pentandion, Tautormermischung, 98%
Supelco
Mesitylen, analytical standard
Sigma-Aldrich
Natriumhydroxid, anhydrous, free-flowing, Redi-Dri, reagent grade, ≥98%, pellets
Supelco
Tetrapropylammoniumbromid, suitable for ion pair chromatography, LiChropur, ≥99.0% (AT)