Direkt zum Inhalt
Merck
  • Detection of the cyclic nitramine explosives hexahydro-1,3,5-trinitro- 1,3,5-triazine (RDX) and octahydro- 1,3,5,7-tetranitro- 1,3,5,7-tetrazine (HMX) and their degradation products in soil environments.

Detection of the cyclic nitramine explosives hexahydro-1,3,5-trinitro- 1,3,5-triazine (RDX) and octahydro- 1,3,5,7-tetranitro- 1,3,5,7-tetrazine (HMX) and their degradation products in soil environments.

Journal of chromatography. A (2001-02-24)
C A Groom, S Beaudet, A Halasz, L Paquet, J Hawari
ZUSAMMENFASSUNG

The cyclic nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine (HMX) were examined in field and microcosm soil samples to determine their patterns of degradation and environmental fates. A number of analytical techniques, including solid-phase microextraction with on-fiber derivatization, gas chromatography-mass spectrometry, gas chromatography with electron-capture detection, liquid chromatography-mass spectrometry, and micellar electrokinetic chromatography were required for the analyses. Two different classes of intermediates were detected, both of which lead ultimately to the formation of nitrous oxide (N2O) and carbon dioxide (CO2). The first class was identified as the nitroso derivatives formed by the sequential reduction of -NO2 functional groups. The second class of intermediates, which was favored at higher humidities and in the presence of anaerobic sludge amendments, consisted of ring cleavage products including bis-(hydroxymethyl)-nitramine and methylenedinitramine. Rye-grass (Lolium perenne) present in field samples was found to extract and accumulate HMX from soil without further degradation. In all cases (excepting the plant samples), the indigenous microbes or amended domestic anaerobic sludge consortia degraded the cyclic nitramine explosives eventually to produce N2O and CO2.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Supelco
SPME-Faseranordnung Polydimethylsiloxan/Divinylbenzen (PDMS/DVB), df 65 μm(PDMS/DVB, needle size 24 ga, StableFlex, for use with autosampler
Supelco
SPME-Faseranordnung Polydimethylsiloxan/Divinylbenzen (PDMS/DVB), df 65 μm(PDMS/DVB, needle size 24 ga, for use with manual holder
Supelco
SPME-Faseranordnung Polydimethylsiloxan/Divinylbenzen (PDMS/DVB), df 65 μm(PDMS/DVB, needle size 23 ga, PDMS/DVB StableFlex, for use with autosampler
Supelco
SPME-Faseranordnung Polydimethylsiloxan/Divinylbenzen (PDMS/DVB), df 65 μm(PDMS/DVB, needle size 24 ga, for use with autosampler
Supelco
SPME-Faseranordnung Polydimethylsiloxan/Divinylbenzen (PDMS/DVB), df 65 μm(PDMS/DVB, needle size 24 ga, StableFlex, for use with manual holder
Supelco
SPME-Faseranordnung Polydimethylsiloxan/Divinylbenzen (PDMS/DVB), df 65 μm(PDMS/DVB, for use with autosampler, needle size 23 ga
Supelco
SPME-Faseranordnung Polydimethylsiloxan/Divinylbenzen (PDMS/DVB), fused silica fiber, df 65 μm(PDMS/DVB, for use with manual holder, needle size 23 ga
Supelco
Tragbarer SPME-Field-Sampler, coating PDMS/DVB
Supelco
SPME-Faseranordnung Polydimethylsiloxan/Divinylbenzen (PDMS/DVB), df 65 μm(PDMS/DVB, for use with autosampler, needle size 23 ga, metal alloy fiber