Direkt zum Inhalt
Merck
  • The PEL1 gene (renamed PGS1) encodes the phosphatidylglycero-phosphate synthase of Saccharomyces cerevisiae.

The PEL1 gene (renamed PGS1) encodes the phosphatidylglycero-phosphate synthase of Saccharomyces cerevisiae.

The Journal of biological chemistry (1998-05-23)
S C Chang, P N Heacock, C J Clancey, W Dowhan
ZUSAMMENFASSUNG

Phosphatidylglycerophosphate (PG-P) synthase catalyzes the synthesis of PG-P from CDP-diacylglycerol and sn-glycerol 3-phosphate and functions as the committed and rate-limiting step in the biosynthesis of cardiolipin (CL). In eukaryotic cells, CL is found predominantly in the inner mitochondrial membrane and is generally thought to be an essential component of many mitochondrial functions. We have determined that the PEL1 gene (now renamed PGS1), previously proposed to encode a second phosphatidylserine synthase of yeast (Janitor, M., Jarosch, E., Schweyen, R. J., and Subik, J. (1995) Yeast 13, 1223-1231), in fact encodes a PG-P synthase of Saccharomyces cerevisiae. Overexpression of the PGS1 gene product under the inducible GAL1 promoter resulted in a 14-fold increase in in vitro PG-P synthase activity. Disruption of the PGS1 gene in a haploid strain of yeast did not lead to a loss of viability but did result in a dependence on a fermentable carbon source for growth, a temperature sensitivity for growth, and a petite lethal phenotype. The pgs1 null mutant exhibited no detectable in vitro PG-P synthase activity and no detectable CL or phosphatidylglycerol (PG); significant CL synthase activity was still present. The growth arrest phenotype and lack of PG-P synthase activity of a pgsA null allele of Escherichia coli was corrected by an N-terminal truncated derivative of the yeast PG-P synthase. These results unequivocally demonstrate that the PGS1 gene encodes the major PG-P synthase of yeast and that neither PG nor CL are absolutely essential for cell viability but may be important for normal mitochondrial function.