Direkt zum Inhalt
Merck
  • Krabbe disease: psychosine-mediated activation of phospholipase A2 in oligodendrocyte cell death.

Krabbe disease: psychosine-mediated activation of phospholipase A2 in oligodendrocyte cell death.

Journal of lipid research (2006-04-29)
S Giri, M Khan, R Rattan, I Singh, A K Singh
ZUSAMMENFASSUNG

Globoid cell leukodystrophy (Krabbe disease) is an inherited neurological disorder caused by the pathogenomic accumulation of psychosine (galactosylsphingosine), a substrate for the deficient enzyme galactocerebroside beta-galactosidase. This study underscores the mechanism of action of psychosine in the regulation of oligodendrocyte cell death via the generation of lysophosphatidylcholine (LPC) and arachidonic acid (AA) by the activation of secretory phospholipase A2 (sPLA2). There was a significant increase in the level of LPC, indicating a phospholipase A2 (PLA2)-dependent pathobiology, in the brains of Krabbe disease patients and those of twitcher mice, an animal model of Krabbe disease. In vitro studies of the treatment of primary oligodendrocytes and the oligodendrocyte MO3.13 cell line with psychosine also showed the generation of LPC and the release of AA in a dose- and time-dependent manner, indicating psychosine-induced activation of PLA2. Studies with various pharmacological inhibitors of cytosolic phospholipase A2 and sPLA2 and psychosine-mediated induction of sPLA2 enzymatic activity in media supernatant suggest that psychosine-induced release of AA and generation of LPC is mainly contributed by sPLA2. An inhibitor of sPLA2, 7,7-dimethyl eicosadienoic acid, completely attenuated the psychosine-mediated accumulation of LPC levels, release of AA, and generation of reactive oxygen species, and blocked oligodendroyte cell death, as evident from cell survival, DNA fragmentation, and caspase 3 activity assays. This study documents for the first time that psychosine-induced cell death is mediated via the sPLA2 signaling pathway and that inhibitors of sPLA2 may hold a therapeutic potential for protection against oligodendrocyte cell death and resulting demyelination in Krabbe disease.