Direkt zum Inhalt
Merck

Solvation and structure of LiAlH(4) in ethereal solvents.

Inorganic chemistry (2005-07-19)
Damián E Bikiel, Florencia Di Salvo, Mariano C González Lebrero, Fabio Doctorovich, Darío A Estrin
ZUSAMMENFASSUNG

The nature of the solute species present in ethereal solutions of LiAlH(4) is of crucial importance for understanding the mechanisms for the reduction of ketones and other functional groups by LiAlH(4). We have employed a combination of theoretical and experimental techniques to investigate the structure of LiAlH(4) in ethereal solutions. Using complexation agents, we measured the IR spectra of LiAlH(4) and AlH(4)(-) in tetrahydrofuran (THF). Hybrid quantum-classical (QM-MM) simulations have also been carried out to compute the IR spectra of associated and dissociated LiAlH(4) species and the free-energy profile for the dissociation process in solution. Our experimental estimate of the dissociation constant in THF is 0.021 +/- 0.002, while the predicted computational value corresponding to a model dimethyl ether solvent is 0.001. The free-energy profile shows only one minimum corresponding to a contact ion pair at a Li-Al separation distance of 3.0 A. These results are consistent with the fact that LiAlH(4) is essentially associated in ethereal solutions forming contact ion pairs.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Lithiumaluminiumhydrid, powder, reagent grade, 95%
Sigma-Aldrich
Lithiumaluminiumhydrid -Lösung, 1.0 M in THF
Sigma-Aldrich
Lithiumaluminiumhydrid -Lösung, 2.0 M in THF
Sigma-Aldrich
Lithiumaluminiumhydrid, pellets, reagent grade, 95%
Sigma-Aldrich
Lithiumaluminiumhydrid -Lösung, 1.0 M in diethyl ether
Sigma-Aldrich
Lithiumaluminiumhydrid, hydrogen-storage grade
Sigma-Aldrich
Lithiumaluminiumhydrid -Lösung, 2.3 M in 2-methyltetrahydrofuran
Sigma-Aldrich
Lithiumaluminiumhydrid, ≥97.0% (gas-volumetric)
Sigma-Aldrich
Lithiumaluminiumhydrid -Lösung, 0.5 M in 2-methoxyethyl ether
Sigma-Aldrich
Lithiumaluminiumhydrid, ≥97.0% (gas-volumetric), tablet (5 g each)