Direkt zum Inhalt
Merck
  • Acute vs. chronic effects of elevated hemoglobin O(2) affinity on O(2) transport in maximal exercise.

Acute vs. chronic effects of elevated hemoglobin O(2) affinity on O(2) transport in maximal exercise.

Journal of applied physiology (Bethesda, Md. : 1985) (2000-07-25)
K K Henderson, W McCanse, T Urano, I Kuwahira, R Clancy, N C Gonzalez
ZUSAMMENFASSUNG

These studies were conducted to compare the effects on systemic O(2) transport of chronically vs. acutely increased Hb O(2) affinity. O(2) transport during maximal normoxic and hypoxic [inspired PO(2) (PI(O(2))) = 70 and 55 Torr, respectively] exercise was studied in rats with Hb O(2) affinity that was increased chronically by sodium cyanate (group 1) or acutely by transfusion with blood obtained from cyanate-treated rats (group 2). Group 3 consisted of normal rats. Hb O(2) half-saturation pressure (P(50); Torr) during maximal exercise was approximately 26 in groups 1 and 2 and approximately 46 in group 3. In normoxia, maximal blood O(2) convection (TO(2 max) = cardiac output x arterial blood O(2) content) was similar in all groups, whereas in hypoxia TO(2 max) was significantly higher in groups 1 and 2 than in group 3. Tissue O(2) extraction (arteriovenous O(2) content/arterial O(2) content) was lowest in group 1, intermediate in group 2, and highest in group 3 (P < 0.05) at all exercise PI(O(2)) values. In normoxia, maximal O(2) utilization (VO(2 max)) paralleled O(2) extraction ratio and was lowest in group 1, intermediate in group 2, and highest in group 3 (P < 0.05). In hypoxia, the lower O(2) extraction ratio values of groups 1 and 2 were offset by their higher TO(2 max); accordingly, their differences in VO(2 max) from group 3 were attenuated or reversed. Tissue O(2) transfer capacity (VO(2 max)/mixed venous PO(2)) was lowest in group 1 and comparable in groups 2 and 3. We conclude that lowering Hb P(50) has opposing effects on TO(2 max) and O(2) extraction ratio, with the relative magnitude of these changes, which varies with PI(O(2)), determining VO(2 max). Although the lower O(2) extraction ratio of groups 2 vs. 3 suggests a decrease in tissue PO(2) diffusion gradient secondary to the low P(50), the lower O(2) extraction ratio of groups 1 vs. 2 suggests additional negative effects of sodium cyanate and/or chronically low Hb P(50) on tissue O(2) transfer.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Natriumcyanat, 96%