Direkt zum Inhalt
Merck

Transcriptome variation in response to gastrointestinal nematode infection in goats.

PloS one (2019-06-21)
Hadeer M Aboshady, Nathalie Mandonnet, Michael J Stear, Rémy Arquet, Malia Bederina, Julien Sarry, Gwenola Tosser-Klopp, Christophe Klopp, Anna M Johansson, Elisabeth Jonas, Jean-Christophe Bambou
ZUSAMMENFASSUNG

Gastrointestinal nematodes (GIN) are a major constraint for small ruminant production. Due to the rise of anthelmintic resistance throughout the world, alternative control strategies are needed. The development of GIN resistance breeding programs is a promising strategy. However, a better understanding of the mechanisms underlying genetic resistance might lead to more effective breeding programmes. In this study, we compare transcriptome profiling of abomasal mucosa and lymph node tissues from non-infected, resistant and susceptible infected Creole goats using RNA-sequencing. A total of 24 kids, 12 susceptible and 12 GIN resistant based on the estimated breeding value, were infected twice with 10,000 L3 Haemonchus contortus. Physiological and parasitological parameters were monitored during infection. Seven weeks after the second infection, extreme kids (n = 6 resistant and 6 susceptible), chosen on the basis of the fecal egg counts (FEC), and 3 uninfected control animals were slaughtered. Susceptible kids had significantly higher FEC compared with resistant kids during the second infection with no differences in worm burden, male and female worm count or establishment rate. A higher number of differentially expressed genes (DEG) were identified in infected compared with non-infected animals in both abomasal mucosa (792 DEG) and lymph nodes (1726 DEG). There were fewer DEG in resistant versus susceptible groups (342 and 450 DEG, in abomasal mucosa and lymph nodes respectively). 'Cell cycle' and 'cell death and survival' were the main identified networks in mucosal tissue when comparing infected versus non-infected kids. Antigen processing and presentation of peptide antigen via major histocompatibility complex class I were in the top biological functions for the DEG identified in lymph nodes. The TGFβ1 gene was one of the top 5 upstream DEG in mucosal tissue. Our results are one of the fist investigating differences in the expression profile induced by GIN infection in goats.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Fluorethylencarbonat, 99%