Accéder au contenu
MilliporeSigma

Local inhibition of elastase reduces EMILIN1 cleavage reactivating lymphatic vessel function in a mouse lymphoedema model.

Clinical science (London, England : 1979) (2016-02-28)
Eliana Pivetta, Bruna Wassermann, Lisa Del Bel Belluz, Carla Danussi, Teresa Maria Elisa Modica, Orlando Maiorani, Giulia Bosisio, Francesco Boccardo, Vincenzo Canzonieri, Alfonso Colombatti, Paola Spessotto
RÉSUMÉ

Lymphatic vasculature critically depends on the connections of lymphatic endothelial cells with the extracellular matrix (ECM), which are mediated by anchoring filaments (AFs). The ECM protein EMILIN1 is a component of AFs and is involved in the regulation of lymphatic vessel functions: accordingly, Emilin1(-/-) mice display lymphatic vascular morphological alterations, leading to functional defects such as mild lymphoedema, lymph leakage and compromised lymph drainage. In the present study, using a mouse post-surgical tail lymphoedema model, we show that the acute phase of acquired lymphoedema correlates with EMILIN1 degradation due to neutrophil elastase (NE) released by infiltrating neutrophils. As a consequence, the intercellular junctions of lymphatic endothelial cells are weakened and drainage to regional lymph nodes is severely affected. The local administration of sivelestat, a specific NE inhibitor, prevents EMILIN1 degradation and reduces lymphoedema, restoring a normal lymphatic functionality. The finding that, in human secondary lymphoedema samples, we also detected cleaved EMILIN1 with the typical bands of an NE-dependent pattern of fragmentation establishes a rationale for a powerful strategy that targets NE inhibition. In conclusion, the attempts to block EMILIN1 degradation locally represent the basis for a novel 'ECM' pharmacological approach to assessing new lymphoedema treatments.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Sivelestat sodium salt hydrate, ≥98% (HPLC), solid