Accéder au contenu
MilliporeSigma

Uridine Diphosphate-Glucuronosyltransferase (UGT) Xenobiotic Metabolizing Activity and Genetic Evolution in Pinniped Species.

Toxicological sciences : an official journal of the Society of Toxicology (2015-07-17)
Mayu Kakehi, Yoshinori Ikenaka, Shouta M M Nakayama, Yusuke K Kawai, Kensuke P Watanabe, Hazuki Mizukawa, Kei Nomiyama, Shinsuke Tanabe, Mayumi Ishizuka
RÉSUMÉ

There are various interspecies differences in xenobiotic-metabolizing enzymes. It is known that cats show slow glucuronidation of drugs such as acetaminophen and strong side effects due to the UGT1A6 pseudogene. Recently, the UGT1A6 pseudogene was found in the Northern elephant seal and Otariidae was suggested to be UGT1A6-deficient. From the results of measurements of uridine diphosphate-glucuronosyltransferase (UGT) activity using liver microsomes, the Steller sea lion, Northern fur seal, and Caspian seal showed UGT activity toward 1-hydroxypyrene and acetaminophen as low as in cats, which was significantly lower than in rat and dog. Furthermore, UGT1A6 pseudogenes were found in Steller sea lion and Northern fur seal, and all Otariidae species were suggested to have the UGT1A6 pseudogene. The UGT1 family genes appear to have undergone birth-and-death evolution based on a phylogenetic and synteny analysis of the UGT1 family in mammals including Carnivora. UGT1A2-1A5 and UGT1A7-1A10 are paralogous genes to UGT1A1 and UGTA6, respectively, and their numbers were lower in cat, ferret and Pacific walrus than in human, rat, and dog. Felidae and Pinnipedia, which are less exposed to natural xenobiotics such as plant-derived toxins due to their carnivorous diet, have experienced fewer gene duplications of xenobiotic-metabolizing UGT genes, and even possess UGT1A6 pseudogenes. Artificial environmental pollutants and drugs conjugated by UGT are increasing dramatically, and their elimination to the environment can be of great consequence to cat and Pinnipedia species, whose low xenobiotic glucuronidation capacity makes them highly sensitive to these compounds.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acide acétique, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acide acétique, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Acide formique, reagent grade, ≥95%
Sigma-Aldrich
Acide formique, ACS reagent, ≥96%
Sigma-Aldrich
Acétate d′ammonium, ACS reagent, ≥97%
Sigma-Aldrich
Acide formique, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Acétate d′ammonium, ≥99.99% trace metals basis
Sigma-Aldrich
Acide acétique, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Acide acétique, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
Acide acétique solution, suitable for HPLC
Sigma-Aldrich
Acide acétique, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
Acide formique, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Sodium phosphate, 96%
Sigma-Aldrich
Acide formique, ACS reagent, ≥88%
Sigma-Aldrich
Acétate d′ammonium, for molecular biology, ≥98%
Sigma-Aldrich
Cholate de sodium hydrate, from bovine and/or ovine bile, ≥99%
Sigma-Aldrich
Acétate d′ammonium solution, for molecular biology, 7.5 M
Sigma-Aldrich
Pyrene, 98%
Sigma-Aldrich
Acide acétique, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Acétate d′ammonium, 99.999% trace metals basis
Sigma-Aldrich
Acide acétique, ≥99.5%, FCC, FG
Sigma-Aldrich
Acide acétique, natural, ≥99.5%, FG
Sigma-Aldrich
Cholate de sodium hydrate, BioXtra, ≥99%
Sigma-Aldrich
Uridine 5′-diphosphoglucuronic acid ammonium salt, 98-100%
Sigma-Aldrich
Acide formique, ≥95%, FCC, FG
Sigma-Aldrich
Pyrene, puriss. p.a., for fluorescence, ≥99.0% (GC)
Sigma-Aldrich
Acide acétique, glacial, puriss., 99-100%
Sigma-Aldrich
Cholate de sodium hydrate, ≥97.0% (dried material, NT)
SAFC
Cholate de sodium hydrate
Sigma-Aldrich
Cholate de sodium hydrate, suitable for cell culture, BioReagent