Accéder au contenu
MilliporeSigma

Novel nuclear export signal-interacting protein, NESI, critical for the assembly of hepatitis delta virus.

Journal of virology (2005-06-16)
Yun-Hsin Wang, Shin C Chang, Cheng Huang, Ya-Ping Li, Chia-Huei Lee, Ming-Fu Chang
RÉSUMÉ

The process of host factor-mediated nucleocytoplasmic transport is critical for diverse cellular events in eukaryotes and the life cycle of viruses. We have previously identified a chromosome region maintenance 1-independent nuclear export signal (NES) at the C terminus of the large form of hepatitis delta antigen (HDAg), designated NES(HDAg-L) that is required for the assembly of hepatitis delta virus (HDV) (C.-H. Lee et al., J. Biol. Chem. 276:8142-8148, 2001). To look for interacting proteins of the NES(HDAg-L), yeast two-hybrid screening was applied using the GAL4-binding domain fused to the NES(HDAg-L) as bait. Among the positive clones, one encodes a protein, designated NESI [NES(HDAg-L) interacting protein] that specifically interacted with the wild-type NES(HDAg-L) but not with the export/package-defective HDAg-L mutant, NES*(HDAg-L), in which Pro-205 has been replaced by Ala. Northern blot analysis revealed NESI as the gene product of a 1.9-kb endogenous mRNA transcript that is present predominantly in human liver tissue. NESI consists of 467 amino acid residues and bears a putative actin-binding site and a bipartite nuclear localization signal. Specific interaction between HDAg-L and NESI was further confirmed by coimmunoprecipitation and immunofluorescence staining. Overexpression of antisense NESI RNAs inhibited the expression of NESI and abolished HDAg-L-mediated nuclear export and assembly of HDV genomic RNA. These data indicate a critical role of NESI in the assembly of HDV through interaction with HDAg-L.