Accéder au contenu
MilliporeSigma
  • Postdinner resistance exercise improves postprandial risk factors more effectively than predinner resistance exercise in patients with type 2 diabetes.

Postdinner resistance exercise improves postprandial risk factors more effectively than predinner resistance exercise in patients with type 2 diabetes.

Journal of applied physiology (Bethesda, Md. : 1985) (2014-12-30)
Timothy D Heden, Nathan C Winn, Andrea Mari, Frank W Booth, R Scott Rector, John P Thyfault, Jill A Kanaley
RÉSUMÉ

Abnormally elevated postprandial glucose and triacylglycerol (TAG) concentrations are risk factors for cardiovascular disease in type 2 diabetes. The most effective time to exercise to lower postprandial glucose and TAG concentrations is unknown. Thus the aim of this study was to determine what time is more effective, either pre- or postdinner resistance exercise (RE), at improving postprandial risk factors in patients with type 2 diabetes. Thirteen obese patients with type 2 diabetes completed three trials in a random order in which they consumed a dinner meal with 1) no RE (NoRE), 2) predinner RE (RE → M), and 3) postdinner RE beginning 45 min after dinner (M → RE). Clinical outcome measures included postprandial glucose and TAG concentrations. In addition, postprandial acetaminophen (gastric emptying), endocrine responses, free fatty acids, and β-cell function (mathematical modeling) were measured to determine whether these factors were related to changes in glucose and TAG. The TAG incremental area under the curve (iAUC) was ∼92% lower (P ≤ 0.02) during M → RE compared with NoRE and RE → M, an effect due in part to lower very-low-density lipoprotein-1 TAG concentrations. The glucose iAUC was reduced (P = 0.02) by ∼18 and 30% during the RE → M and M → RE trials, respectively, compared with NoRE, with no difference between RE trials. RE → M and M → RE reduced the insulin iAUC by 35 and 48%, respectively, compared with NoRE (P < 0.01). The glucagon-like peptide-1 iAUC was ∼50% lower (P ≤ 0.02) during M → RE compared with NoRE and RE → M. Given that predinner RE only improves postprandial glucose concentrations, whereas postdinner RE improves both postprandial glucose and TAG concentrations, postdinner RE may lower the risk of cardiovascular disease more effectively.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
bromure de potassium, FT-IR grade, ≥99% trace metals basis
Supelco
Acétaminophène, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
bromure de potassium, ACS reagent, ≥99.0%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Acide éthylènediaminetétraacétique solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
USP
Acétaminophène, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Acétaminophène, meets USP testing specifications, 98.0-102.0%, powder
Sigma-Aldrich
bromure de potassium, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99%
Sigma-Aldrich
Acide éthylènediaminetétraacétique disodium salt solution, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
bromure de potassium, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Acétaminophène, BioXtra, ≥99.0%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Acétaminophène, analytical standard