Accéder au contenu
MilliporeSigma

Antiproliferative effects of CDK4/6 inhibition in CDK4-amplified human liposarcoma in vitro and in vivo.

Molecular cancer therapeutics (2014-07-17)
Yi-Xiang Zhang, Ewa Sicinska, Jeffrey T Czaplinski, Stephen P Remillard, Samuel Moss, Yuchuan Wang, Christopher Brain, Alice Loo, Eric L Snyder, George D Demetri, Sunkyu Kim, Andrew L Kung, Andrew J Wagner
RÉSUMÉ

Well-differentiated/dedifferentiated liposarcomas (WD/DDLPS) are among the most common subtypes of soft tissue sarcomas. Conventional systemic chemotherapy has limited efficacy and novel therapeutic strategies are needed to achieve better outcomes for patients. The cyclin-dependent kinase 4 (CDK4) gene is highly amplified in more than 95% of WD/DDLPS. In this study, we explored the role of CDK4 and the effects of NVP-LEE011 (LEE011), a novel selective inhibitor of CDK4/CDK6, on a panel of human liposarcoma cell lines and primary tumor xenografts. We found that both CDK4 knockdown by siRNA and inhibition by LEE011 diminished retinoblastoma (RB) phosphorylation and dramatically decreased liposarcoma cell growth. Cell-cycle analysis demonstrated arrest at G0-G1. siRNA-mediated knockdown of RB rescued the inhibitory effects of LEE011, demonstrating that LEE011 decreased proliferation through RB. Oral administration of LEE011 to mice bearing human liposarcoma xenografts resulted in approximately 50% reduction in tumor (18)F-fluorodeoxyglucose uptake with decreased tumor biomarkers, including RB phosphorylation and bromodeoxyuridine incorporation in vivo. Continued treatment inhibited tumor growth or induced regression without detrimental effects on mouse weight. After prolonged continuous dosing, reestablishment of RB phosphorylation and cell-cycle progression was noted. These findings validate the critical role of CDK4 in maintaining liposarcoma proliferation through its ability to inactivate RB function, and suggest its potential function in the regulation of survival and metabolism of liposarcoma, supporting the rationale for clinical development of LEE011 for the treatment of WD/DDLPS.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Glycérol, for molecular biology, ≥99.0%
Sigma-Aldrich
Glycérol, ACS reagent, ≥99.5%
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Glycérol, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Chlorure de sodium, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Chlorure de sodium solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Chlorure de sodium, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Chlorure de sodium solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Iodure de propidium, ≥94.0% (HPLC)
Sigma-Aldrich
Glycérol, ≥99.5%
Sigma-Aldrich
Chlorure de sodium, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Anticorps monoclonal anti-α-tubuline antibody produced in mouse, clone DM1A, ascites fluid
Sigma-Aldrich
Glycérol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycérol solution, 83.5-89.5% (T)
Sigma-Aldrich
HEPES solution, 1 M in H2O
SAFC
Chlorure de sodium solution, 5 M
Sigma-Aldrich
Glycérol, puriss., anhydrous, 99.0-101.0% (alkalimetric)
Sigma-Aldrich
Glycérol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Chlorure de sodium, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
SAFC
HEPES