Accéder au contenu
MilliporeSigma

Copper is required for oncogenic BRAF signalling and tumorigenesis.

Nature (2014-04-11)
Donita C Brady, Matthew S Crowe, Michelle L Turski, G Aaron Hobbs, Xiaojie Yao, Apirat Chaikuad, Stefan Knapp, Kunhong Xiao, Sharon L Campbell, Dennis J Thiele, Christopher M Counter
RÉSUMÉ

The BRAF kinase is mutated, typically Val 600→Glu (V600E), to induce an active oncogenic state in a large fraction of melanomas, thyroid cancers, hairy cell leukaemias and, to a smaller extent, a wide spectrum of other cancers. BRAF(V600E) phosphorylates and activates the MEK1 and MEK2 kinases, which in turn phosphorylate and activate the ERK1 and ERK2 kinases, stimulating the mitogen-activated protein kinase (MAPK) pathway to promote cancer. Targeting MEK1/2 is proving to be an important therapeutic strategy, given that a MEK1/2 inhibitor provides a survival advantage in metastatic melanoma, an effect that is increased when administered together with a BRAF(V600E) inhibitor. We previously found that copper (Cu) influx enhances MEK1 phosphorylation of ERK1/2 through a Cu-MEK1 interaction. Here we show decreasing the levels of CTR1 (Cu transporter 1), or mutations in MEK1 that disrupt Cu binding, decreased BRAF(V600E)-driven signalling and tumorigenesis in mice and human cell settings. Conversely, a MEK1-MEK5 chimaera that phosphorylated ERK1/2 independently of Cu or an active ERK2 restored the tumour growth of murine cells lacking Ctr1. Cu chelators used in the treatment of Wilson disease decreased tumour growth of human or murine cells transformed by BRAF(V600E) or engineered to be resistant to BRAF inhibition. Taken together, these results suggest that Cu-chelation therapy could be repurposed to treat cancers containing the BRAF(V600E) mutation.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Copper, powder, 99.99% trace metals basis
Sigma-Aldrich
Copper, foil, thickness 0.25 mm, 99.98% trace metals basis
Sigma-Aldrich
Copper, powder, <425 μm, 99.5% trace metals basis
Sigma-Aldrich
Copper, wire, diam. 1.0 mm, ≥99.9%
Sigma-Aldrich
Copper, powder, <75 μm, 99%
Sigma-Aldrich
Copper, nanopowder, 40-60 nm particle size (SAXS), ≥99.5% trace metals basis
Sigma-Aldrich
Copper, powder (spheroidal), 10-25 μm, 98%
Sigma-Aldrich
Copper, wire, diam. 0.25 mm, 99.999% trace metals basis
Sigma-Aldrich
Copper, foil, thickness 0.025 mm, 99.98% trace metals basis
Sigma-Aldrich
Copper, nanopowder, 60-80 nm particle size (SAXS), ≥99.5% trace metals basis
Sigma-Aldrich
Copper, turnings, purum p.a., ≥99.0%
Sigma-Aldrich
Copper, foil, ≥99.8% (complexometric)
Sigma-Aldrich
Copper, powder (dendritic), <45 μm, 99.7% trace metals basis
Sigma-Aldrich
Copper, wire, diam. 0.64 mm, 99.995% trace metals basis
Sigma-Aldrich
Copper, foil, thickness 0.5 mm, 99.98% trace metals basis
Sigma-Aldrich
Copper, shot, −3-+14 mesh, 99%
Sigma-Aldrich
Copper, foil, thickness 1.0 mm, 99.999% trace metals basis
Copper, rod, 100mm, diameter 9.5mm, hard, 99.9%
Copper, mesh, 100x100mm, nominal aperture 0.14mm, thickness 0.25mm, wire diameter 0.115mm, 100x100 wires/inch, open area 30.3%, plain weave mesh
Sigma-Aldrich
Copper, beads, 2-8 mm, 99.9995% trace metals basis
Sigma-Aldrich
Copper, wire, diam. 2.0 mm, 99.999% trace metals basis
Sigma-Aldrich
Copper, beads, 2-8 mm, ≥99.99% trace metals basis
Copper, tube, 100mm, outside diameter 3.5mm, inside diameter 1.56mm, wall thickness 0.97mm, as drawn, 99.9%
Copper, tube, 500mm, outside diameter 6.35mm, inside diameter 4.93mm, wall thickness 0.71mm, as drawn, 99.9%
Copper, rod, 50mm, diameter 6.35mm, as drawn, 99.999%
Copper, rod, 1000mm, diameter 4.8mm, hard, 99.9%
Copper, rod, 50mm, diameter 12.7mm, as drawn, 99.99+%
Copper - O.F.H.C., sheet, 150x150mm, thickness 3.0mm, 99.95+%
Copper, rod, 200mm, diameter 8.0mm, as drawn, 99.99+%
Copper, mesh, 100x100mm, nominal aperture 0.38mm, wire diameter 0.25mm, 40x40 wires/inch, open area 37%, plain weave mesh