Accéder au contenu
MilliporeSigma

Can serum beta-hydroxybutyrate be used to diagnose diabetic ketoacidosis?

Diabetes care (2008-01-11)
Mae Sheikh-Ali, Brad S Karon, Ananda Basu, Yogish C Kudva, Lisa A Muller, Jia Xu, W Frederick Schwenk, John M Miles
RÉSUMÉ

Current criteria for the diagnosis of diabetic ketoacidosis (DKA) are limited by their nonspecificity (serum bicarbonate [HCO(3)] and pH) and qualitative nature (the presence of ketonemia/ketonuria). The present study was undertaken to determine whether quantitative measurement of a ketone body anion could be used to diagnose DKA. A retrospective review of records from hospitalized diabetic patients was undertaken to determine the concentration of serum beta-hydroxybutyrate (betaOHB) that corresponds to a HCO(3) level of 18 mEq/l, the threshold value for diagnosis in recently published consensus criteria. Simultaneous admission betaOHB and HCO(3) values were recorded from 466 encounters, 129 in children and 337 in adults. A HCO(3) level of 18 mEq/l corresponded with betaOHB levels of 3.0 and 3.8 mmol/l in children and adults, respectively. With the use of these threshold betaOHB values to define DKA, there was substantial discordance (approximately > or = 20%) between betaOHB and conventional diagnostic criteria using HCO(3), pH, and glucose. In patients with DKA, there was no correlation between HCO(3) and glucose levels on admission and a significant but weak correlation between betaOHB and glucose levels (P < 0.001). Where available, serum betaOHB levels > or = 3.0 and > or = 3.8 mmol/l in children and adults, respectively, in the presence of uncontrolled diabetes can be used to diagnose DKA and may be superior to the serum HCO(3) level for that purpose. The marked variability in the relationship between betaOHB and HCO(3) is probably due to the presence of other acid-base disturbances, especially hyperchloremic, nonanion gap acidosis.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acétone, ACS reagent, ≥99.5%
Sigma-Aldrich
Acétone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Glycérol, ACS reagent, ≥99.5%
Sigma-Aldrich
Glycérol, for molecular biology, ≥99.0%
Sigma-Aldrich
Acétone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Glycérol, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Butan-1-ol, 99.9%
Sigma-Aldrich
Acétone, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Butan-1-ol, ACS reagent, ≥99.4%
Sigma-Aldrich
Butan-1-ol, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Acétone, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Acétone, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Glycérol solution, 83.5-89.5% (T)
Sigma-Aldrich
Glycérol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycérol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Acétone, ACS reagent, ≥99.5%
Sigma-Aldrich
Butan-1-ol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Dimethylamine solution, 40 wt. % in H2O
Sigma-Aldrich
Glycérol, puriss., anhydrous, 99.0-101.0% (alkalimetric)
Sigma-Aldrich
Methylglyoxal solution, ~40% in H2O
Sigma-Aldrich
Glycérol, puriss. p.a., ACS reagent, anhydrous, dist., ≥99.5% (GC)
Sigma-Aldrich
Dimethylamine solution, 2.0 M in THF
Sigma-Aldrich
Glycérol, FCC, FG
Sigma-Aldrich
Acétone, histological grade, ≥99.5%
Sigma-Aldrich
3-Hydroxybutyric acid, 95%
Sigma-Aldrich
Butan-1-ol, for molecular biology, ≥99%
Sigma-Aldrich
Dodecanedioic acid, 99%
Sigma-Aldrich
Chromium, powder, ≥99% trace metals basis, <45 μm
Sigma-Aldrich
L-Carnitine inner salt, synthetic, ≥98%
Sigma-Aldrich
Acétone, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99% (GC)