Accéder au contenu
MilliporeSigma

Rhodamine 6G conjugated-quantum dots used for highly sensitive and selective ratiometric fluorescence sensor of glutathione.

Talanta (2012-05-23)
Rijun Gui, Xueqin An, Hongjuan Su, Weiguo Shen, Linyong Zhu, Xingyuan Ma, Zhiyun Chen, Xiaoyong Wang
RÉSUMÉ

Rhodamine 6G (R6G) and 3-mercaptopropionic acid (MPA) capped-CdTe quantum dots (QDs) were conjugated by electrostatic interactions in aqueous solution. The R6G-QDs conjugate was utilized as a photoluminescence (PL) ratiometric sensor for the detection of glutathione (GSH). In this method, intentional introduction of GSH destroyed the conjugation of R6G and QDs, and induced regular PL change of R6G-QDs conjugates due to the competitive chelation between GSH and MPA ligand on the surface of QDs. The ratio of PL intensity of R6G (I(R6G)) to that of QDs (I(QDs)) in this conjugate was near linear toward the concentration of GSH in the range from 0.05 to 80 μM, and corresponding regression equation showed a good linear coefficient of 0.9954. The limit of detection of 15 nM in this proposed method was about 40-fold lower than that of other QDs-based PL sensors. Interferential experiments testified that R6G-QDs conjugates-based ratiometric PL sensor of GSH showed high selectivity over other related thiols and amino acids. Real sample assays further verified perfect analysis performance of the PL sensor of GSH. In comparison with conventional analytical techniques for the measurement of GSH, this ratiometric PL sensor was facile, economic, highly sensitive and selective.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
3-Mercaptopropionic acid, ≥99%
Sigma-Aldrich
3-Mercaptopropionic acid, ≥99.0% (HPLC)