- Noncovalent functionalization of DNA-wrapped single-walled carbon nanotubes with platinum-based DNA cross-linkers.
Noncovalent functionalization of DNA-wrapped single-walled carbon nanotubes with platinum-based DNA cross-linkers.
A method for noncovalent functionalization of DNA-wrapped single-walled carbon nanotubes (SWNTs) using platinum-based DNA cross-linkers is investigated. In particular, cisplatin and potassium tetrachloroplatinate are shown to bind to DNA that encapsulates SWNTs in aqueous solution. The bound platinum salt can then be reduced to decorate the DNA-encapsulated SWNTs with platinum nanoparticles. The resulting SWNT/DNA/Pt hybrids are investigated by optical absorption spectroscopy, circular dichroism spectroscopy, Raman spectroscopy, X-ray diffraction, transmission electron microscopy, and atomic force microscopy. The unique combination of catalytic activity of nanoscale platinum, biological functionality of DNA, and optoelectronic properties of SWNTs suggests a myriad of applications including fuel cells, catalysts, biosensors, and electrochemical devices.