Accéder au contenu
MilliporeSigma

PFG-NMR measurements of the self-diffusion coefficients of water in equilibrium poly(HEMA-co-THFMA) hydrogels.

Biomacromolecules (2002-05-15)
Phuong Y Ghi, David J T Hill, Andrew K Whittaker
RÉSUMÉ

The self-diffusion coefficients for water in a series of copolymers of 2-hydroxyethyl methacrylate, HEMA, and tetrahydrofurfuryl methacrylate, THFMA, swollen with water to their equilibrium states have been studied at 310 K using PFG-NMR. The self-diffusion coefficients calculated from the Stejskal-Tanner equation, D(obs), for all of the hydrated polymers were found to be dependent on the NMR storage time, as a result of spin exchange between the proton reservoirs of the water and the polymers, reaching an equilibrium plateau value at long storage times. The true values of the diffusion coefficients were calculated from the values of D(obs) in the plateau regions by applying a correction for the fraction of water protons present, obtained from the equilibrium water contents of the gels. The true self-diffusion coefficient for water in polyHEMA obtained at 310 K by this method was 5.5 x 10(-10) m(2)s-1. For the copolymers containing 20% HEMA or more a single value of the self-diffusion coefficient was found, which was somewhat larger than the corresponding values obtained for the macroscopic diffusion coefficient from sorption measurements. For polyTHFMA and copolymers containing less than 20% HEMA, the PFG-NMR stimulated echo attenuation decay curves and the log-attenuation plots were characteristic of the presence of two diffusing water species. The self-diffusion coefficients of water in the equilibrium-hydrated copolymers were found to be dependent on the copolymer composition, decreasing with increasing THFMA content.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Tetrahydrofurfuryl methacrylate, contains 75 ppm HQ as inhibitor, 900 ppm MEHQ as inhibitor, 97%