Accéder au contenu
MilliporeSigma

Substrate adhesion regulates sealing zone architecture and dynamics in cultured osteoclasts.

PloS one (2011-12-14)
Fabian Anderegg, Dafna Geblinger, Peter Horvath, Mirren Charnley, Marcus Textor, Lia Addadi, Benjamin Geiger
RÉSUMÉ

The bone-degrading activity of osteoclasts depends on the formation of a cytoskeletal-adhesive super-structure known as the sealing zone (SZ). The SZ is a dynamic structure, consisting of a condensed array of podosomes, the elementary adhesion-mediating structures of osteoclasts, interconnected by F-actin filaments. The molecular composition and structure of the SZ were extensively investigated, yet despite its major importance for bone formation and remodelling, the mechanisms underlying its assembly and dynamics are still poorly understood. Here we determine the relations between matrix adhesiveness and the formation, stability and expansion of the SZ. By growing differentiated osteoclasts on micro-patterned glass substrates, where adhesive areas are separated by non-adhesive PLL-g-PEG barriers, we show that SZ growth and fusion strictly depend on the continuity of substrate adhesiveness, at the micrometer scale. We present a possible model for the role of mechanical forces in SZ formation and reorganization, inspired by the current data.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Triton X-100, for molecular biology
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Triton X-100, BioXtra
Sigma-Aldrich
Triton X-100, peroxide- and carbonyl-free