Accéder au contenu
MilliporeSigma

Anti-Adipogenic Effect of Alchemilla monticola is Mediated Via PI3K/AKT Signaling Inhibition in Human Adipocytes.

Frontiers in pharmacology (2021-09-07)
Saveta G Mladenova, Liliya V Vasileva, Martina S Savova, Andrey S Marchev, Daniel Tews, Martin Wabitsch, Claudio Ferrante, Giustino Orlando, Milen I Georgiev
RÉSUMÉ

Obesity is a persistent and continuously expanding social health concern. Excessive fat mass accumulation is associated with increased risk of chronic diseases including diabetes, atherosclerosis, non-alcoholic steatohepatitis, reproductive dysfunctions and certain types of cancer. Alchemilla monticola Opiz. is a perennial plant of the Rosaceae family traditionally used to treat inflammatory conditions and as a component of weight loss herbal mixtures. In the search for bioactive leads with potential anti-adipogenic effect from A. monticola extract (ALM), we have employed nuclear magnetic resonance (NMR) based metabolomics to obtain data for the phytochemical profile of the extract. Further, molecular docking simulation was performed against key adipogenic targets for selected pure compounds, present in the ALM extract. Evaluation of the biological activity was done in human adipocytes exposed to ALM (5, 10 and 25 μg/ml), pure astragalin (AST) or quercitrin (QUE) both at the concentrations of 5, 10 and 25 μM. Investigation of the molecular pathways involved was performed through real-time quantitative PCR and Western blot analyses. According to the docking predictions strong putative affinity was revealed for both AST and QUE towards peroxisome proliferator-activated receptor gamma (PPARγ) and phosphoinositide 3-kinase (PI3K). Assessment of the intracellular lipid accumulation revealed anti-adipogenic activity of ALM. Correspondingly, the expression of the adipogenic genes CCAAT/enhancer-binding protein alpha (CEBPA) and PPARG was downregulated upon ALM and AST treatment. The Western blotting results exposed protein kinase B (AKT), PI3K and PPARγ as targets for the inhibitory effect of ALM and AST on adipogenesis. Collectively, we provide a broader insight of the phytochemical composition of A. monticola. Additionally, we demonstrate the anti-adipogenic effect of ALM and its active compound AST in human adipocytes. Furthermore, PI3K/AKT signaling pathway is identified to mediate the ALM anti-adipogenic action. Hence, the ALM extract and its secondary metabolite AST are worth further exploration as potentially active agents in obesity management.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Adipolysis Assay Kit, sufficient for 200 colorimetric or fluorometric tests