Accéder au contenu
MilliporeSigma

Kcnj16 knockout produces audiogenic seizures in the Dahl salt-sensitive rat.

JCI insight (2020-11-25)
Anna D Manis, Oleg Palygin, Elena Isaeva, Vladislav Levchenko, Peter S LaViolette, Tengis S Pavlov, Matthew R Hodges, Alexander Staruschenko
RÉSUMÉ

Kir5.1 is an inwardly rectifying potassium (Kir) channel subunit abundantly expressed in the kidney and brain. We previously established the physiologic consequences of a Kcnj16 (gene encoding Kir5.1) knockout in the Dahl salt-sensitive rat (SSKcnj16-/-), which caused electrolyte/pH dysregulation and high-salt diet-induced mortality. Since Kir channel gene mutations may alter neuronal excitability and are linked to human seizure disorders, we hypothesized that SSKcnj16-/- rats would exhibit neurological phenotypes, including increased susceptibility to seizures. SSKcnj16-/- rats exhibited increased light sensitivity (fMRI) and reproducible sound-induced tonic-clonic audiogenic seizures confirmed by electroencephalography. Repeated seizure induction altered behavior, exacerbated hypokalemia, and led to approximately 38% mortality in male SSKcnj16-/- rats. Dietary potassium supplementation did not prevent audiogenic seizures but mitigated hypokalemia and prevented mortality induced by repeated seizures. These results reveal a distinct, nonredundant role for Kir5.1 channels in the brain, introduce a rat model of audiogenic seizures, and suggest that yet-to-be identified mutations in Kcnj16 may cause or contribute to seizure disorders.