Accéder au contenu
MilliporeSigma
  • Subpopulation targeting of pyruvate dehydrogenase and GLUT1 decouples metabolic heterogeneity during collective cancer cell invasion.

Subpopulation targeting of pyruvate dehydrogenase and GLUT1 decouples metabolic heterogeneity during collective cancer cell invasion.

Nature communications (2020-03-27)
R Commander, C Wei, A Sharma, J K Mouw, L J Burton, E Summerbell, D Mahboubi, R J Peterson, J Konen, W Zhou, Y Du, H Fu, M Shanmugam, A I Marcus
RÉSUMÉ

Phenotypic heterogeneity exists within collectively invading packs of tumor cells, suggesting that cellular subtypes cooperate to drive invasion and metastasis. Here, we take a chemical biology approach to probe cell:cell cooperation within the collective invasion pack. These data reveal metabolic heterogeneity within invasive chains, in which leader cells preferentially utilize mitochondrial respiration and trailing follower cells rely on elevated glucose uptake. We define a pyruvate dehydrogenase (PDH) dependency in leader cells that can be therapeutically exploited with the mitochondria-targeting compound alexidine dihydrochloride. In contrast, follower cells highly express glucose transporter 1 (GLUT1), which sustains an elevated level of glucose uptake required to maintain proliferation. Co-targeting of both leader and follower cells with PDH and GLUT1 inhibitors, respectively, inhibits cell growth and collective invasion. Taken together, our work reveals metabolic heterogeneity within the lung cancer collective invasion pack and provides rationale for co-targeting PDH and GLUT1 to inhibit collective invasion.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
2-Deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose, ≥97% (HPLC)
Sigma-Aldrich
Anticorps anti-tubuline, clone YL1/2, clone YL1/2, Chemicon®, from rat
Sigma-Aldrich
Potassium dichloroacetate, 98%
Sigma-Aldrich
Alexidine dihydrochloride, ≥95% (HPLC)
Sigma-Aldrich
MISSION® esiRNA, targeting human SLC2A1
Sigma-Aldrich
MISSION® esiRNA, targeting human PDHA1