Accéder au contenu
MilliporeSigma

Preparation of asymmetric phospholipid vesicles for use as cell membrane models.

Nature protocols (2018-09-08)
Milka Doktorova, Frederick A Heberle, Barbara Eicher, Robert F Standaert, John Katsaras, Erwin London, Georg Pabst, Drew Marquardt
RÉSUMÉ

Freely suspended liposomes are widely used as model membranes for studying lipid-lipid and protein-lipid interactions. Liposomes prepared by conventional methods have chemically identical bilayer leaflets. By contrast, living cells actively maintain different lipid compositions in the two leaflets of the plasma membrane, resulting in asymmetric membrane properties that are critical for normal cell function. Here, we present a protocol for the preparation of unilamellar asymmetric phospholipid vesicles that better mimic biological membranes. Asymmetry is generated by methyl-β-cyclodextrin-catalyzed exchange of the outer leaflet lipids between vesicle pools of differing lipid composition. Lipid destined for the outer leaflet of the asymmetric vesicles is provided by heavy-donor multilamellar vesicles containing a dense sucrose core. Donor lipid is exchanged into extruded unilamellar acceptor vesicles that lack the sucrose core, facilitating the post-exchange separation of the donor and acceptor pools by centrifugation because of differences in vesicle size and density. We present two complementary assays allowing quantification of each leaflet's lipid composition: the overall lipid composition is determined by gas chromatography-mass spectrometry, whereas the lipid distribution between the two leaflets is determined by NMR, using the lanthanide shift reagent Pr3+. The preparation protocol and the chromatographic assay can be applied to any type of phospholipid bilayer, whereas the NMR assay is specific to lipids with choline-containing headgroups, such as phosphatidylcholine and sphingomyelin. In ~12 h, the protocol can produce a large yield of asymmetric vesicles (up to 20 mg) suitable for a wide range of biophysical studies.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Avanti
d5-TG ISTD Mix I, Avanti Research - A Croda Brand LM6000
Avanti
Extruder Casing-SS, Avanti Research - A Croda Brand