Accéder au contenu
MilliporeSigma

PKA phosphorylation underlies functional recruitment of sarcolemmal SK2 channels in ventricular myocytes from hypertrophic hearts.

The Journal of physiology (2019-02-17)
Shanna Hamilton, Iuliia Polina, Radmila Terentyeva, Peter Bronk, Tae Yun Kim, Karim Roder, Richard T Clements, Gideon Koren, Bum-Rak Choi, Dmitry Terentyev
RÉSUMÉ

Small-conductance Ca2+ -activated K+ (SK) channels expressed in ventricular myocytes are dormant in health, yet become functional in cardiac disease. SK channels are voltage independent and their gating is controlled by intracellular [Ca2+ ] in a biphasic manner. Submicromolar [Ca2+ ] activates the channel via constitutively-bound calmodulin, whereas higher [Ca2+ ] exerts inhibitory effect during depolarization. Using a rat model of cardiac hypertrophy induced by thoracic aortic banding, we found that functional upregulation of SK2 channels in hypertrophic rat ventricular cardiomyocytes is driven by protein kinase A (PKA) phosphorylation. Using site-directed mutagenesis, we identified serine-465 as the site conferring PKA-dependent effects on SK2 channel function. PKA phosphorylation attenuates ISK rectification by reducing the Ca2+ /voltage-dependent inhibition of SK channels without changing their sensitivity to activating submicromolar [Ca2+ ]i . This mechanism underlies the functional recruitment of SK channels not only in cardiac disease, but also in normal physiology, contributing to repolarization under conditions of enhanced adrenergic drive. Small-conductance Ca2+ -activated K+ (SK) channels expressed in ventricular myocytes (VMs) are dormant in health, yet become functional in cardiac disease. We aimed to test the hypothesis that post-translational modification of SK channels under conditions accompanied by enhanced adrenergic drive plays a central role in disease-related activation of the channels. We investigated this phenomenon using a rat model of hypertrophy induced by thoracic aortic banding (TAB). Western blot analysis using anti-pan-serine/threonine antibodies demonstrated enhanced phosphorylation of immunoprecipitated SK2 channels in VMs from TAB rats vs. Shams, which was reversible by incubation of the VMs with PKA inhibitor H89 (1 μmol L-1 ). Patch clamped VMs under basal conditions from TABs but not Shams exhibited outward current sensitive to the specific SK inhibitor apamin (100 nmol L-1 ), which was eliminated by inhibition of PKA (1 μmol L-1 ). Beta-adrenergic stimulation (isoproterenol, 100 nmol L-1 ) evoked ISK in VMs from Shams, resulting in shortening of action potentials in VMs and ex vivo optically mapped Sham hearts. Using adenoviral gene transfer, wild-type and mutant SK2 channels were overexpressed in adult rat VMs, revealing serine-465 as the site that elicits PKA-dependent phosphorylation effects on SK2 channel function. Concurrent confocal Ca2+ imaging experiments established that PKA phosphorylation lessens rectification of ISK via reduction Ca2+ /voltage-dependent inhibition of the channels at high [Ca2+ ] without affecting their sensitivity to activation by Ca2+ in the submicromolar range. In conclusion, upregulation of SK channels in diseased VMs is mediated by hyperadrenergic drive in cardiac hypertrophy, with functional effects on the channel conferred by PKA-dependent phosphorylation at serine-465.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Réactifs de détection in situ Duolink® Orange
Sigma-Aldrich
Sonde PLA® in situ DuolinkDuolink® anti-lapin MINUS
Millipore
Set de cocktail d′inhibiteurs de phosphatases II, A cocktail of five phosphatase inhibitors for the inhibition of acid and alkaline phosphatases as well as protein tyrosine phosphatases (PTPs). Suitable for use with cell lysates and tissue extracts.
Sigma-Aldrich
Duolink® In Situ PLA® Probe Anti-Goat PLUS
Sigma-Aldrich
PKA Inhibitor 14-22 Amide, Cell-Permeable, Myristoylated, PKA Inhibitor 14-22 Amide is myristoylated at the N-terminus that enhances its cell-permeability. The non-myristoylated version is shown to be a specific inhibitor of PKA (Ki = 36 nM).
Sigma-Aldrich
Pyrvinium pamoate salt hydrate, ≥98% (HPLC)
Sigma-Aldrich
Anti-PP2A Antibody, C subunit, clone 1D6, clone 1D6, Upstate®, from mouse