Accéder au contenu
MilliporeSigma
  • Electroporated GLUT4-7myc-GFP detects in vivo glucose transporter 4 translocation in skeletal muscle without discernible changes in GFP patterns.

Electroporated GLUT4-7myc-GFP detects in vivo glucose transporter 4 translocation in skeletal muscle without discernible changes in GFP patterns.

Experimental physiology (2019-02-03)
Jonas Roland Knudsen, Carlos Henriquez-Olguin, Zhencheng Li, Thomas Elbenhardt Jensen
RÉSUMÉ

What is the central question of this study? Resolving the mechanism(s) leading to glucose transporter 4 (GLUT4) translocation to the muscle surface membrane has great therapeutic potential. However, the measurement of GLUT4 translocation is technically challenging. Here, we asked whether electroporation of GLUT4-7myc-GFP into skeletal muscle could be used as a tool to study GLUT4 translocation in vivo. What is the main finding and its importance? By acutely inducing GLUT4-7myc-GFP expression in skeletal muscle, we verified that in vivo exercise and AICAR stimulation increased the GLUT4 presence in the sarcolemma measured as myc signal. Importantly, the increased myc signal in the sarcolemma was not accompanied by major visual changes in the distribution of the GFP signal. Insulin and exercise lead to translocation of the glucose transporter 4 (GLUT4) to the surface membrane of skeletal muscle fibres. This process is pivotal for facilitating glucose uptake into skeletal muscle. To study this, a robust assay is needed to measure the translocation of GLUT4 in adult skeletal muscle directly. Here, we aimed to validate a simple GLUT4 translocation assay using a genetically encoded biosensor in mouse skeletal muscle. We transfected GLUT4-7myc-GFP into mouse muscle to study live GLUT4 movement and to evaluate GLUT4 insertion in the muscle surface membrane after in vivo running exercise and pharmacological activation of AMP-activated protein kinase (AMPK). Transfection led to expression of GLUT4-7myc-GFP that was dynamic in live flexor digitorum brevis fibres and which, upon insulin stimulation, exposed the myc epitope extracellularly. Running exercise, in addition to AMPK activation by 5-aminoimidazole-4-carboxamide ribonucleotide, induced ∼125 and ∼100% increase, respectively, in extracellularly exposure of GLUT4 in the surface membrane of tibialis anterior muscle. Interestingly, the clear increase in surface-exposed GLUT4 content induced by insulin, exercise or AMPK activation was not accompanied by any discernible reorganization of the GLUT4-GFP signal. In conclusion, we provide a detailed description of an easy-to-use translocation assay to study GLUT4 accumulation at the surface membrane induced by exercise and exercise-mimicking stimuli. Notably, our analyses revealed that increased GLUT4 surface membrane accumulation was not accompanied by a discernible change in the GLUT4 localization pattern.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anti-phospho-Acetyl CoA Carboxylase (Ser79) Antibody, Upstate®, from rabbit