Accéder au contenu
MilliporeSigma

A Possible Role for Long Interspersed Nuclear Elements-1 (LINE-1) in Huntington's Disease Progression.

Medical science monitor : international medical journal of experimental and clinical research (2018-06-01)
Huiping Tan, Chunlin Wu, Lei Jin
RÉSUMÉ

BACKGROUND Recent studies have shown that increased mobilization of Long Interspersed Nuclear Elements-1 (L1) can promote the pathophysiology of multiple neurological diseases. However, its role in Huntington's disease (HD) remains unknown. MATERIAL AND METHODS R6/2 mice - a common mouse model of HD - were used to evaluate changes in L1 mobilization. Pyrosequencing was used to evaluate methylation content changes. L1-ORF1 and L1-ORF2 expression analysis were evaluated by RT-PCR and immunoblotting. Changes in pro-survival signaling were evaluated by L1-ORF overexpression studies and validated in the mouse model by immunohistochemistry and immunoblotting. RESULTS We found an increased mobilization of L1 elements in the caudate genome of R6/2 mice (p<0.05) - a common mouse model of HD - but not in wild-type mice. Subsequent pyrosequencing and expression analysis showed that the L1 elements were hypomethylated and their respective ORFs were overexpressed in the affected tissues. In addition, a significant decrease in the pro-survival proteins such as the phosphoproteins of AKT target proteins, mTORC1 activity, and AMPK alpha levels was observed with the increase in the expression L1-ORF2. CONCLUSIONS These findings indicate that hyperactive retrotransposition of L1 triggers a downstream signaling pathway affecting the neuronal survival pathways via downregulation of mTORC1 activity and AMPKalpha and increasing apoptosis in neurons.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anti-POU5F1 (Oct4) antibody produced in rabbit, ~1.0 mg/mL, affinity isolated antibody, buffered aqueous solution