Accéder au contenu
MilliporeSigma

A Wnt5 Activity Asymmetry and Intercellular Signaling via PCP Proteins Polarize Node Cells for Left-Right Symmetry Breaking.

Developmental cell (2017-03-16)
Katsura Minegishi, Masakazu Hashimoto, Rieko Ajima, Katsuyoshi Takaoka, Kyosuke Shinohara, Yayoi Ikawa, Hiromi Nishimura, Andrew P McMahon, Karl Willert, Yasushi Okada, Hiroshi Sasaki, Dongbo Shi, Toshihiko Fujimori, Toshihisa Ohtsuka, Yasunobu Igarashi, Terry P Yamaguchi, Akihiko Shimono, Hidetaka Shiratori, Hiroshi Hamada
RÉSUMÉ

Polarization of node cells along the anterior-posterior axis of mouse embryos is responsible for left-right symmetry breaking. How node cells become polarized has remained unknown, however. Wnt5a and Wnt5b are expressed posteriorly relative to the node, whereas genes for Sfrp inhibitors of Wnt signaling are expressed anteriorly. Here we show that polarization of node cells is impaired in Wnt5a-/-Wnt5b-/- and Sfrp mutant embryos, and also in the presence of a uniform distribution of Wnt5a or Sfrp1, suggesting that Wnt5 and Sfrp proteins act as instructive signals in this process. The absence of planar cell polarity (PCP) core proteins Prickle1 and Prickle2 in individual cells or local forced expression of Wnt5a perturbed polarization of neighboring wild-type cells. Our results suggest that opposing gradients of Wnt5a and Wnt5b and of their Sfrp inhibitors, together with intercellular signaling via PCP proteins, polarize node cells along the anterior-posterior axis for breaking of left-right symmetry.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anti-VANGL1 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-VANGL2 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution