Skip to Content
MilliporeSigma
  • Lipoic acid suppression of neutrophil respiratory burst: effect of NADPH.

Lipoic acid suppression of neutrophil respiratory burst: effect of NADPH.

Antioxidants & redox signaling (2007-12-27)
Heidi C O'Neill, Raymond C Rancourt, Carl W White
ABSTRACT

Lipoic acid (LA) and its reduced product dihydrolipoic acid (DHLA) are potent antioxidants with capacity to scavenge reactive oxygen species (ROS) and recycle endogenous antioxidants. LA may increase cellular glutathione (GSH), an antioxidant lacking in the lung's epithelial lining fluid in lung disorders such as idiopathic pulmonary fibrosis (IPF). Neutrophils (PMN) are key innate responders and are pivotal in clearing bacterial infection, therefore it is crucial to understand the impact LA may have on their function. Circulating neutrophils were isolated from healthy volunteers and pretreated with LA or diluent. Cells were subsequently activated with phorbol 12-myristate 13-acetate (PMA, 100 ng/ml) to induce ROS production. SOD-inhibitable reduction of acetylated cytochrome c demonstrated the PMA-dependent respiratory burst was suppressed by LA. Oxygen consumption also was diminished when PMA-stimulated cells were pretreated with LA. PMN respiratory burst was partially restored by addition of NADPH but not other pyridine nucleotides. LA did not inhibit glucose-6-phosphate dehydrogenase activity of PMN. These data together suggest that the reduction of LA to DHLA using cellular NADPH may limit the capacity of the PMN NADPH oxidase to produce superoxide. Further studies will be required to determine if LA can diminish excessive superoxide produced by PMN and/or alveolar macrophages in IPF or relevant disease models in vivo.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cytochrome c partially acetylated from equine heart, lyophilized powder