Skip to Content
MilliporeSigma
  • Cytoplasmic Accumulation of Heterogeneous Nuclear Ribonucleoprotein K Strongly Promotes Tumor Invasion in Renal Cell Carcinoma Cells.

Cytoplasmic Accumulation of Heterogeneous Nuclear Ribonucleoprotein K Strongly Promotes Tumor Invasion in Renal Cell Carcinoma Cells.

PloS one (2015-12-30)
Taiyo Otoshi, Tomoaki Tanaka, Kazuya Morimoto, Tatsuya Nakatani
ABSTRACT

Heterogeneous nuclear ribonucleoprotein (hnRNP) K is a part of the ribonucleoprotein complex which regulates diverse biological events. While overexpression of hnRNP K has been shown to be related to tumorigenesis in several cancers, both the expression patterns and biological mechanisms of hnRNP K in renal cell carcinoma (RCC) cells remain unclear. In this study, we showed that hnRNP K protein was strongly expressed in selected RCC cell lines (ACHN, A498, Caki-1, 786-0), and knock-down of hnRNP K expression by siRNA induced cell growth inhibition and apoptosis. Based on immunohistochemical (IHC) analysis of hnRNP K expression in human clear cell RCC specimens, we demonstrated that there was a significant positive correlation between hnRNP K staining score and tumor aggressiveness (e.g., Fuhrman grade, metastasis). Particularly, the rate of cytoplasmic localization of hnRNP K in primary RCC with distant metastasis was significantly higher than that in RCC without metastasis. Additionally, our results indicated that the cytoplasmic distribution of hnRNP K induced by TGF-β stimulus mainly contributed to TGF-β-triggered tumor cell invasion in RCC cells. Dominant cytoplasmic expression of ectopic hnRNP K markedly suppressed the inhibition of invasion by knock-down of endogenous hnRNP K. The expression level of matrix metalloproteinase protein-2 was decreased by endogenous hnRNP K knock-down, and restored by ectopic hnRNP K. Therefore, hnRNP K may be a key molecule involved in cell motility in RCC cells, and molecular mechanism associated with the subcellular localization of hnRNP K may be a novel target in the treatment of metastatic RCC.