Skip to Content
MilliporeSigma
  • Chlamydophila psittaci-negative ocular adnexal marginal zone lymphomas express self polyreactive B-cell receptors.

Chlamydophila psittaci-negative ocular adnexal marginal zone lymphomas express self polyreactive B-cell receptors.

Leukemia (2015-02-14)
D Zhu, S Bhatt, X Lu, F Guo, H Veelken, D K Hsu, F-T Liu, S Alvarez Cubela, K Kunkalla, F Vega, J R Chapman-Fredricks, I S Lossos
ABSTRACT

The pathogenesis of Chlamydophila psittaci-negative ocular adnexal extranodal marginal zone lymphomas (OAEMZLs) is poorly understood. OAEMZLs are monoclonal tumors expressing a biased repertoire of mutated surface immunoglobulins. Antigenic activation of the B-cell receptor (BCR) may have a role in the pathogenesis of these lymphomas. We have analyzed the reactivity of recombinant OAEMZL immunoglobulins. OAEMZL antibodies reacted with self-human antigens, as demonstrated by enzyme-linked immunosorbent assays, HEp-2 immunofluorescence and human protein microarrays. All the analyzed recombinant antibodies (rAbs) exhibited polyreactivity by comprehensive protein array antibody reactivity and some rAbs also demonstrated rheumatoid factor activity. The identity of several reactive antigens was confirmed by microcapillary reverse-phase high-performance liquid chromatography nano-electrospray tandem mass spectrometry. The tested rAbs frequently reacted with shared intracellular and extracellular self-antigens (for example, galectin-3). Furthermore, these self-antigens induced BCR signaling in B cells expressing cognate surface immunoglobulins derived from OAEMZLs. These findings indicate that interactions between self-antigens and cognate OAEMZL tumor-derived BCRs are functional, inducing intracellular signaling. Overall, our findings suggest that self-antigen-induced BCR stimulation may be implicated in the pathogenesis of C. psittaci-negative OAEMZLs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sucrose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
2-Mercaptoethanol, ≥99.0%
Sigma-Aldrich
2-Mercaptoethanol, for molecular biology, suitable for electrophoresis, suitable for cell culture, BioReagent, 99% (GC/titration)
Sigma-Aldrich
2-Mercaptoethanol, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Lgals3