Skip to Content
MilliporeSigma
  • Phase II metabolism in human skin: skin explants show full coverage for glucuronidation, sulfation, N-acetylation, catechol methylation, and glutathione conjugation.

Phase II metabolism in human skin: skin explants show full coverage for glucuronidation, sulfation, N-acetylation, catechol methylation, and glutathione conjugation.

Drug metabolism and disposition: the biological fate of chemicals (2014-10-24)
Nenad Manevski, Piet Swart, Kamal Kumar Balavenkatraman, Barbara Bertschi, Gian Camenisch, Olivier Kretz, Hilmar Schiller, Markus Walles, Barbara Ling, Reto Wettstein, Dirk J Schaefer, Peter Itin, Joanna Ashton-Chess, Francois Pognan, Armin Wolf, Karine Litherland
ABSTRACT

Although skin is the largest organ of the human body, cutaneous drug metabolism is often overlooked, and existing experimental models are insufficiently validated. This proof-of-concept study investigated phase II biotransformation of 11 test substrates in fresh full-thickness human skin explants, a model containing all skin cell types. Results show that skin explants have significant capacity for glucuronidation, sulfation, N-acetylation, catechol methylation, and glutathione conjugation. Novel skin metabolites were identified, including acyl glucuronides of indomethacin and diclofenac, glucuronides of 17β-estradiol, N-acetylprocainamide, and methoxy derivatives of 4-nitrocatechol and 2,3-dihydroxynaphthalene. Measured activities for 10 μM substrate incubations spanned a 1000-fold: from the highest 4.758 pmol·mg skin(-1)·h(-1) for p-toluidine N-acetylation to the lowest 0.006 pmol·mg skin(-1)·h(-1) for 17β-estradiol 17-glucuronidation. Interindividual variability was 1.4- to 13.0-fold, the highest being 4-methylumbelliferone and diclofenac glucuronidation. Reaction rates were generally linear up to 4 hours, although 24-hour incubations enabled detection of metabolites in trace amounts. All reactions were unaffected by the inclusion of cosubstrates, and freezing of the fresh skin led to loss of glucuronidation activity. The predicted whole-skin intrinsic metabolic clearances were significantly lower compared with corresponding whole-liver intrinsic clearances, suggesting a relatively limited contribution of the skin to the body's total systemic phase II enzyme-mediated metabolic clearance. Nevertheless, the fresh full-thickness skin explants represent a suitable model to study cutaneous phase II metabolism not only in drug elimination but also in toxicity, as formation of acyl glucuronides and sulfate conjugates could play a role in skin adverse reactions.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Minoxidil, ≥99% (TLC)
Sigma-Aldrich
4-Methylumbelliferone, ≥98%
Sigma-Aldrich
Water, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Hydrocortisone, ≥98% (HPLC)
Sigma-Aldrich
Water, PCR Reagent
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥97.5% (HPLC)
Sigma-Aldrich
Hydrocortisone, meets USP testing specifications
Sigma-Aldrich
Water, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
E-Toxate Water, endotoxin, free
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, 98%
Sigma-Aldrich
D-Saccharic acid 1,4-lactone monohydrate, ≥98.0% (HPLC)
Sigma-Aldrich
Hydrocortisone, BioReagent, suitable for cell culture
Sigma-Aldrich
Water, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrocortisone, γ-irradiated, powder, BioXtra, suitable for cell culture
Sigma-Aldrich
Water, deuterium-depleted, ≤1 ppm (Deuterium oxide)
Supelco
Water, for HPCE, for luminescence, suitable for UV/Vis spectroscopy
Sigma-Aldrich
Water, tested according to Ph. Eur.
Sigma-Aldrich
Water, for molecular biology, sterile filtered
Sigma-Aldrich
1-Chloro-2,4-dinitrobenzene, 97%
Sigma-Aldrich
4-Nitrocatechol, ≥96.0%
Sigma-Aldrich
1-Chloro-2,4-dinitrobenzene, ≥99%
Sigma-Aldrich
Water, for cell biology, sterile ultrafiltered
Sigma-Aldrich
2,3-Dihydroxynaphthalene, ≥98.0% (HPLC)
Supelco
Density Standard 998 kg/m3, H&D Fitzgerald Ltd. Quality
USP
Procainamide hydrochloride, United States Pharmacopeia (USP) Reference Standard
Minoxidil, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Water, BioPerformance Certified
Supelco
Water, ACS reagent, for ultratrace analysis
Supelco
Procainamide hydrochloride, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Water, suitable for ion chromatography