Skip to Content
MilliporeSigma
  • Nonclinical evaluation of novel cationically modified polysaccharide antidotes for unfractionated heparin.

Nonclinical evaluation of novel cationically modified polysaccharide antidotes for unfractionated heparin.

PloS one (2015-03-18)
Bartlomiej Kalaska, Kamil Kaminski, Emilia Sokolowska, Dominik Czaplicki, Monika Kujdowicz, Krystyna Stalinska, Joanna Bereta, Krzysztof Szczubialka, Dariusz Pawlak, Maria Nowakowska, Andrzej Mogielnicki
ABSTRACT

Protamine, the only registered antidote of unfractionated heparin (UFH), may produce a number of adverse effects, such as anaphylactic shock or serious hypotension. We aimed to develop an alternative UFH antidote as efficient as protamine, but safer and easier to produce. As a starting material, we have chosen generally non-toxic, biocompatible, widely available, inexpensive, and easy to functionalize polysaccharides. Our approach was to synthesize, purify and characterize cationic derivatives of dextran, hydroxypropylcellulose, pullulan and γ-cyclodextrin, then to screen them for potential heparin-reversal activity using an in vitro assay and finally examine efficacy and safety of the most active polymers in Wistar rat and BALB/c mouse models of experimentally induced arterial and venous thrombosis. Efficacy studies included the measurement of thrombus formation, activated partial thromboplastin time, bleeding time, and anti-factor Xa activity; safety studies included the measurement of hemodynamic, hematologic and immunologic parameters. Linear, high molecular weight dextran substituted with glycidyltrimethylammonium chloride groups at a ratio of 0.65 per glucose unit (Dex40-GTMAC3) is the most potent and the safest UFH inhibitor showing activity comparable to that of protamine while possessing lower immunogenicity. Cationic polysaccharides of various structures neutralize UFH. Dex40-GTMAC3 is a promising and potentially better UFH antidote than protamine.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
N,N-Dimethylformamide, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Luperox® A75FP, Benzoyl peroxide, 75% remainder water, contains 25 wt. % water as stabilizer, 75%
Sigma-Aldrich
N,N-Dimethylformamide, ACS reagent, ≥99.8%
Supelco
Hydrogen chloride – ethanol solution, ~1.25 M HCl, for GC derivatization, LiChropur
Sigma-Aldrich
N,N-Dimethylformamide, anhydrous, 99.8%
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
N,N-Dimethylformamide, for molecular biology, ≥99%
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), for GC derivatization, LiChropur
Supelco
Hydrogen chloride – 2-propanol solution, ~1.25 M HCl (T), for GC derivatization, LiChropur
Supelco
N,N-Dimethylformamide, analytical standard
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Supelco
Dimethyl sulfoxide, analytical standard
Sigma-Aldrich
Citrate Concentrated Solution, BioUltra, for molecular biology, 1 M in H2O
Sigma-Aldrich
Luperox® A98, Benzoyl peroxide, reagent grade, ≥98%
Sigma-Aldrich
Luperox® A75, Benzoyl peroxide, 75%, remainder water
Sigma-Aldrich
1,2-Dichloroethane, anhydrous, 99.8%
Sigma-Aldrich
Luperox® AFR40, Benzoyl peroxide solution, 40 wt. % in dibutyl phthalate
Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
3,3′,5,5′-Tetramethylbenzidine, ≥99%
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Glycidyltrimethylammonium chloride, technical, ≥90% (calc. based on dry substance, AT)
Sigma-Aldrich
3,3′,5,5′-Tetramethylbenzidine, ≥98.0% (NT)
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Benzoyl peroxide blend with dicyclohexyl phthalate, suitable for use as a catalyst for electron microscopy. Modified to render it safe in transit.