Skip to Content
MilliporeSigma
  • CPEB regulation of TAK1 synthesis mediates cytokine production and the inflammatory immune response.

CPEB regulation of TAK1 synthesis mediates cytokine production and the inflammatory immune response.

Molecular and cellular biology (2014-12-03)
Maria Ivshina, Ilya M Alexandrov, Anastassiia Vertii, Stephen Doxsey, Joel D Richter
ABSTRACT

The cytoplasmic-element-binding (CPEB) protein is a sequence-specific RNA-binding protein that regulates cytoplasmic polyadenylation-induced translation. In mouse embryo fibroblasts (MEFs) lacking CPEB, many mRNAs encoding proteins involved in inflammation are misregulated. Correlated with this aberrant translation in MEFs, a macrophage cell line depleted of CPEB and treated with lipopolysaccharide (LPS) to stimulate the inflammatory immune response expresses high levels of interleukin-6 (IL-6), which is due to prolonged nuclear retention of NF-κB. Two proteins involved in NF-κB nuclear localization and IL-6 expression, IκBα and transforming growth factor beta-activated kinase 1 (TAK1), are present at excessively low and high steady-state levels, respectively, in LPS-treated CPEB-depleted macrophages. However, only TAK1 has an altered synthesis rate that is CPEB dependent and CPEB/TAK1 double depletion alleviates high IL-6 production. Peritoneal macrophages isolated from CPEB knockout (KO) mice treated with LPS in vitro also have prolonged NF-κB nuclear retention and produce high IL-6 levels. LPS-injected CPEB KO mice secrete prodigious amounts of IL-6 and other proinflammatory cytokines and exhibit hypersensitivity to endotoxic shock; these effects are mitigated when the animals are also injected with (5Z)-7-oxozeaenol, a potent and specific inhibitor of TAK1. These data show that CPEB control of TAK1 mRNA translation mediates the inflammatory immune response.

MATERIALS
Product Number
Brand
Product Description

Supelco
4-tert-Octylphenol monoethoxylate solution, 10 μg/mL in acetone, analytical standard
SAFC
Formaldehyde solution, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
Formaldehyde solution, tested according to Ph. Eur.
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Supelco
Formaldehyde solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
Z-Leu-Leu-Leu-al, ≥90% (HPLC)
Sigma-Aldrich
5HPP-33, ≥98% (HPLC), solid