Skip to Content
MilliporeSigma
  • Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acids.

Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acids.

Biochemical and biophysical research communications (1995-09-14)
I Tamai, H Takanaga, H Maeda, Y Sai, T Ogihara, H Higashida, A Tsuji
ABSTRACT

A molecular mechanism for the intestinal monocarboxylic acid transport was characterized by using a proton/monocarboxylate transporter, MCT1, in Chinese hamster ovary (CHO) cells, first found by Garcia et al. (Cell, 76, 865-873, 1994). Northern blotting analysis showed that MCT1-isomers exist in the rat and rabbit intestinal enterocytes and Caco-2 cells. The expression of [14C]lactic acid uptake by Xenopus laevis oocytes injected with rabbit intestinal mRNA was reduced by hybridizing the mRNA with a MCT1 cDNA of CHO cells before microinjection used as the antisense DNA. [14C]Lactic acid uptake by CHO cells was pH dependent, saturable, stereospecific, and reduced in the presence of acetic acid, benzoic acid, S- and R-ibuprofen, S- and R-mandelic acid, nicotinic acid, pravastatin, propionic acid and valproic acid. In addition, several monocarboxylic acids were transported in pH-dependent and saturable manners. These results suggest that the intestinal MCT1-related protein contributes to a carrier-mediated absorption for organic weak acid compounds.