Skip to Content
MilliporeSigma
  • The NTP pyrophosphatase DCTPP1 contributes to the homoeostasis and cleansing of the dNTP pool in human cells.

The NTP pyrophosphatase DCTPP1 contributes to the homoeostasis and cleansing of the dNTP pool in human cells.

The Biochemical journal (2014-01-29)
Cristina E Requena, Guiomar Pérez-Moreno, Luis M Ruiz-Pérez, Antonio E Vidal, Dolores González-Pacanowska
ABSTRACT

The size and composition of dNTP (deoxyribonucleoside triphosphate) pools influence the accuracy of DNA synthesis and consequently the genetic stability of nuclear and mitochondrial genomes. In order to keep the dNTP pool in balance, the synthesis and degradation of DNA precursors must be precisely regulated. One such mechanism involves catabolic activities that convert deoxynucleoside triphosphates into their monophosphate form. Human cells possess an all-α NTP (nucleoside triphosphate) pyrophosphatase named DCTPP1 [dCTP pyrophosphatase 1; also known as XTP3-TPA (XTP3-transactivated protein A)]. In the present study, we provide an extensive characterization of this enzyme which is ubiquitously distributed in the nucleus, cytosol and mitochondria. Interestingly, we found that in addition to dCTP, methyl-dCTP and 5-halogenated nucleotides, DCTPP1 hydrolyses 5-formyl-dCTP very efficiently and with the lowest Km value described so far. Because the biological function of mammalian all-α NTP pyrophosphatases remains uncertain, we examined the role of DCTPP1 in the maintenance of pyrimidine nucleotide pools and cellular sensitivity to pyrimidine analogues. DCTPP1-deficient cells accumulate high levels of dCTP and are hypersensitive to exposure to the nucleoside analogues 5-iodo-2'-deoxycytidine and 5-methyl-2'-deoxycytidine. The results of the present study indicate that DCTPP1 has a central role in the balance of dCTP and the metabolism of deoxycytidine analogues, thus contributing to the preservation of genome integrity.