Skip to Content
MilliporeSigma
  • High affinity binding of a glycopeptide elicitor to tomato cells and microsomal membranes and displacement by specific glycan suppressors.

High affinity binding of a glycopeptide elicitor to tomato cells and microsomal membranes and displacement by specific glycan suppressors.

The Journal of biological chemistry (1993-07-15)
C W Basse, A Fath, T Boller
ABSTRACT

We have previously isolated glycopeptides derived from yeast invertase that acted as highly potent elicitors in suspension-cultured tomato cells, inducing ethylene biosynthesis and phenylalanine ammonia-lyase activity, and we have found that the high mannose oligosaccharides released from the pure glycopeptide elicitors by endo-beta-N-acetylglucosaminidase H acted as suppressors of elicitor activity (Basse, C. W., Bock, K., and Boller, T. (1992) J. Biol. Chem. 267, 10258-10265). One of the elicitor-active glycopeptides (gp 8c) was labeled with t-butoxycarbonyl-L-[35S]methionine and purified by reversed phase high performance liquid chromatography resulting in a specific radioactivity of the derivative of about 900 Ci/mmol. This radiolabeled glycopeptide showed specific, saturable, and reversible binding to whole tomato cells under conditions in which cells are responsive to elicitors as well as to microsomal membranes derived from these cells. Ligand saturation experiments, performed with microsomal membranes, gave a dissociation constant (Kd) of 3.3 nM as determined by Scatchard analysis. Various glycopeptide elicitors and preparations from yeast invertase were compared with respect to their abilities to compete for binding of 35S-labeled gp 8c to tomato membranes and to induce ethylene biosynthesis in tomato cells. These studies revealed a high degree of correlation between elicitor activities in vivo and displacement activities in vitro. In both tests, a high activity depended on the presence of glycan side chains consisting of more than 8 mannosyl residues. The high mannose oligosaccharides that acted as suppressors of elicitor activity in vivo competed for binding of the labeled elicitor also. The suppressor-active glycan Man11GlcNAc and the elicitor-active gp 8c exhibited very similar displacement activities, and the inhibitory constant (Ki) of the glycan Man11GlcNAc was very similar to the Kd value calculated for 35S-labeled gp 8c, indicating that the glycopeptide elicitors and the glycan suppressors derived from these elicitors competed with similar affinities for the same binding site. The suppressor-inactive glycan Man8GlcNAc had a 200-fold lower capacity to compete for binding of 35S-labeled gp 8c to tomato membranes compared with the suppressor-active glycan Man11GlcNAc. Our results demonstrate the existence of a specific elicitor binding site in tomato cell membranes and suggest that glycopeptides and glycans act as agonists and antagonists for induction of the stress response, respectively, by competing for this binding site.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Boc-Met-OSu