Skip to Content
MilliporeSigma
  • Degradation of tetrahydrofurfuryl alcohol by Ralstonia eutropha is initiated by an inducible pyrroloquinoline quinone-dependent alcohol dehydrogenase.

Degradation of tetrahydrofurfuryl alcohol by Ralstonia eutropha is initiated by an inducible pyrroloquinoline quinone-dependent alcohol dehydrogenase.

Applied and environmental microbiology (1997-12-24)
G Zarnt, T Schräder, J R Andreesen
ABSTRACT

An organism tentatively identified as Ralstonia eutropha was isolated from enrichment cultures containing tetrahydrofurfuryl alcohol (THFA) as the sole source of carbon and energy. The strain was able to tolerate up to 200 mM THFA in mineral salt medium. The degradation was initiated by an inducible ferricyanide-dependent alcohol dehydrogenase (ADH) which was detected in the soluble fraction of cell extracts. The enzyme catalyzed the oxidation of THFA to the corresponding tetrahydrofuran-2-carboxylic acid. Studies with n-pentanol as the substrate revealed that the corresponding aldehyde was released as a free intermediate. The enzyme was purified 211-fold to apparent homogeneity and could be identified as a quinohemoprotein containing one pyrroloquinoline quinone and one covalently bound heme c per monomer. It was a monomer of 73 kDa and had an isoelectric point of 9.1. A broad substrate spectrum was obtained for the enzyme, which converted different primary alcohols, starting from C2 compounds, secondary alcohols, diols, polyethylene glycol 6000, and aldehydes, including formaldehyde. A sequence identity of 65% with a quinohemoprotein ADH from Comamonas testosteroni was found by comparing 36 N-terminal amino acids. The ferricyanide-dependent ADH activity was induced during growth on different alcohols except ethanol. In addition to this activity, an NAD-dependent ADH was present depending on the alcohol used as the carbon source.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tetrahydrofurfuryl alcohol, 99%
Sigma-Aldrich
Tetrahydrofurfuryl alcohol, 98%
Sigma-Aldrich
Tetrahydrofurfuryl alcohol, ≥98%