Skip to Content
MilliporeSigma
  • Effects of linezolid on suppressing in vivo production of staphylococcal toxins and improving survival outcomes in a rabbit model of methicillin-resistant Staphylococcus aureus necrotizing pneumonia.

Effects of linezolid on suppressing in vivo production of staphylococcal toxins and improving survival outcomes in a rabbit model of methicillin-resistant Staphylococcus aureus necrotizing pneumonia.

The Journal of infectious diseases (2013-03-28)
Binh An Diep, Anna Afasizheva, Hoan N Le, Osamu Kajikawa, Gustavo Matute-Bello, Christine Tkaczyk, Bret Sellman, Cedric Badiou, Gerard Lina, Henry F Chambers
ABSTRACT

Linezolid is recommended for treatment of pneumonia and other invasive infections caused by methicillin-resistant Staphylococcus aureus (MRSA). The premise underlying this recommendation is that linezolid inhibits in vivo production of potent staphylococcal exotoxins, including Panton-Valentine leukocidin (PVL) and α-hemolysin (Hla), although supporting evidence is lacking. A rabbit model of necrotizing pneumonia using MRSA clone USA300 was used to compare therapeutic effects of linezolid (50 mg/kg 3 times/day) and vancomycin (30 mg/kg 2 times/day) administered 1.5, 4, and 9 hours after infection on host survival outcomes and in vivo bacterial toxin production. Mortality rates were 100% for untreated rabbits and 83%-100% for vancomycin-treated rabbits. In contrast, mortality rates were 25%, 50%, and 100% for rabbits treated with linezolid 1.5, 4, and 9 hours after infection, respectively. Compared with untreated and vancomycin-treated rabbits, improved survival of rabbits treated 1.5 hours after infection with linezolid was associated with a significant decrease in bacterial counts, suppressed bacterial production of PVL and Hla, and reduced production of the neutrophil-chemoattractant interleukin 8 in the lungs. Across the study interval, only early treatment with linezolid resulted in significant suppression of exotoxin synthesis and improved survival outcomes in a rabbit model of MRSA necrotizing pneumonia.