Skip to Content
MilliporeSigma
  • eFGF and its mode of action in the community effect during Xenopus myogenesis.

eFGF and its mode of action in the community effect during Xenopus myogenesis.

Development (Cambridge, England) (2001-03-23)
H J Standley, A M Zorn, J B Gurdon
ABSTRACT

The community effect is an interaction among a group of many nearby precursor cells, necessary for them to maintain tissue-specific gene expression and differentiate co-ordinately. During Xenopus myogenesis, the muscle precursor cells must be in group contact throughout gastrulation in order to develop into terminally differentiated muscle. The molecular basis of this community interaction has not to date been elucidated. We have developed an assay for testing potential community factors, in which isolated muscle precursor cells are treated with a candidate protein and cultured in dispersion. We have tested a number of candidate factors and we find that only eFGF protein is able to mediate a community effect, stimulating stable muscle-specific gene expression in demonstrably single muscle precursor cells. In contrast, Xwnt8, bFGF, BMP4 and TGF(&bgr;)2 do not show this capacity. We show that eFGF is expressed in the muscle precursor cells at the right time to mediate the community effect. Moreover, the time when the muscle precursor cells are sensitive to eFGF corresponds to the period of the endogenous community effect. Finally, we demonstrate that FGF signalling is essential for endogenous community interactions. We conclude that eFGF is likely to mediate the community effect in Xenopus myogenesis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
SU5402, SU5402, CAS 215543-92-3, is a cell-permeable, reversible, and ATP-competitive inhibitor of the tyrosine kinase activity of FGFR1 (IC₅₀ = 10-20 µM in the presence of 1 mM ATP).